Short-Lived Trace Gases in the Surface Ocean and the Atmosphere

  • Peter S. Liss
  • Christa A. Marandino
  • Elizabeth E. Dahl
  • Detlev Helmig
  • Eric J. Hintsa
  • Claire Hughes
  • Martin T. Johnson
  • Robert M. Moore
  • John M. C. Plane
  • Birgit Quack
  • Hanwant B. Singh
  • Jacqueline Stefels
  • Roland von Glasow
  • Jonathan Williams
Part of the Springer Earth System Sciences book series (SPRINGEREARTH)


The two-way exchange of trace gases between the ocean and the atmosphere is important for both the chemistry and physics of the atmosphere and the biogeochemistry of the oceans, including the global cycling of elements. Here we review these exchanges and their importance for a range of gases whose lifetimes are generally short compared to the main greenhouse gases and which are, in most cases, more reactive than them. Gases considered include sulphur and related compounds, organohalogens, non-methane hydrocarbons, ozone, ammonia and related compounds, hydrogen and carbon monoxide. Finally, we stress the interactivity of the system, the importance of process understanding for modeling, the need for more extensive field measurements and their better seasonal coverage, the importance of inter-calibration exercises and finally the need to show the importance of air-sea exchanges for global cycling and how the field fits into the broader context of Earth System Science.


Dissolve Organic Matter Coloured Dissolve Organic Matter Cloud Condensation Nucleus Marine Boundary Layer Ozone Flux 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Abrahamsson KA, Ekdahl J, Collen M, Pedersen M (1995) Marine algae: a source of trichloroethylene and perchloroethylene. Limnol Oceanogr 40:1321–1326Google Scholar
  2. Aitken J (1895) On the number of dust particles in the atmosphere of certain places in Great Britain and on the continent, with remarks on the relation between the amount of dust and meteorological phenomena. Trans Roy Soc Edinb 37:17–49Google Scholar
  3. Alexander B, Park RJ, Jacob DJ, Li QB, Yantosca RM, Savarino J, Lee CCW, Thiemens MH (2005) Sulfate formation in sea-salt aerosols: constraints from oxygen isotopes. J Geophys Res 110, D10307. doi: 10.1029/2004JD005659CrossRefGoogle Scholar
  4. Alexander B, Allman DJ, Amos HM, Fairlie TD, Dachs J, Hegg DA, Sletten RS (2012) Isotopic constraints on the formation pathways of sulfate aerosol in the marine boundary layer of the subtropical northeast Atlantic Ocean. J Geophys Res 117. doi:10,1029/2011JD016773Google Scholar
  5. Alicke B, Hebestreit K, Stutz J, Platt U (1999) Iodine oxide in the marine boundary layer. Nature 397:572–573Google Scholar
  6. Allan BJ, McFiggans G, Plane JMC, Coe H (2000) Observations of iodine monoxide in the remote marine boundary layer. J Geophys Res 105:14363–14369Google Scholar
  7. Allen G et al (2011) South East Pacific atmospheric composition and variability sampled along 20 degrees S during VOCALS-Rex. Atmos Chem Phys 11:5237–5262Google Scholar
  8. Amachi S, Kamagata Y, Kanagawa T, Muramatsu Y (2001) Bacteria mediate methylation of iodine in marine and terrestrial environments. Appl Environ Microbiol 67:2718–2722Google Scholar
  9. Amouroux D, Liss PS, Tessier E, Hamren-Larsson M, Donard OFX (2001) Role of oceans as biogenic sources of selenium. Earth Planet Sci Lett 5878:1–7Google Scholar
  10. Anbar AD, Yung YL, Chavez FP (1996) Methyl bromide: ocean sources, ocean sinks, and climate sensitivity. Glob Biogeochem Cycle 10:175–190Google Scholar
  11. Andreae MO (1990) Ocean–atmosphere interaction in the global biogeochemical sulfur cycle. Mar Chem 30:1–29Google Scholar
  12. Andreae MO, Ferek RJ (1992) Photochemical production of carbonyl sulfide in seawater and its emission to the atmosphere. Global Biogeochem Cycle 6:173–175Google Scholar
  13. Andreae TW, Cutter GA, Husain RN, Radford-Knoery J, Andreae MO (1991) Hydrogen-sulfide and radon in an over the western North-Atlantic Ocean. J Geophys Res 96:18753–18760Google Scholar
  14. Andreae MO, Atlas E, Harris GW, Helas G, deKock A, Koppmann R, Maenhaut W, Mano S, Pollock WH, Rudolph J, Scharle D, Schebeske G, Welling M (1996) Methyl halide emissions from savanna fires in Southern Africa. J Geophys Res 101:23603–23613Google Scholar
  15. Archer SD, Goldson LE, Liddicoat MI, Cummings DG, Nightingale PF (2007) Marked seasonality in the concentrations and sea-to-air flux of volatile iodocarbon compounds in the western English Channel. J Geophys Res 112, C08009. doi: 10.1029/2006JC003963CrossRefGoogle Scholar
  16. Archer SD, Kimmance SA, Stephens JA, Hopkins FE, Bellerby RGJ, Schulz KG, Piontek J, Engel A (2012) Contrasting responses of DMS and DMSP to ocean acidification in Arctic waters. Biogeosciences 9:12803–12843Google Scholar
  17. Arnold SR, Spracklen DV, Williams J, Yassaa N, Sciare J, Bonsang B, Gros V, Peeken I, Lewis AC, Alvain S, Moulin C (2009) Evaluation of the global oceanic isoprene source and its impacts on marine carbon aerosol. Atmos Chem Phys 9:1253–1262Google Scholar
  18. Arnold SR, Spracklen DV, Gebhardt S, Custer T, Williams J, Peeken I, Alvain S (2010) Relationships between atmospheric organic compounds and air-mass exposure to marine biology. Environ Chem 7:232–241Google Scholar
  19. Atkinson R, Carter WPL, Winer AM (1982) Kinetics of the gas-phase reactions of OH radicals with alkyl nitrates at 299 ± 2K. Int J Chem Kinet 14:919–926Google Scholar
  20. Atkinson R, Baulch DL, Cox RA, Crowley JN, Hampson RF, Hynes RG, Jenkin ME, Rossi MJ, Troe J (2007) Evaluated kinetic and photochemical data for atmospheric chemistry: vol. III gas phase reactions of inorganic halogens. Atmos Chem Phys 7:981–1191Google Scholar
  21. Atlas EL, Ridley BA, Hubler G, Walega JG, Carroll MA, Montzka DD, Huebert BJ, Norton RB, Grahek FE, Schauffler S (1992) Partitioning and budget of NOy species during the Mauna Loa observatory photochemistry experiment. J Geophys Res 97:10449–10462Google Scholar
  22. Atlas E, Pollock W, Greenberg J, Heidt L, Thompson AM (1993) Alkyl nitrates, nonmethane hydrocarbons and halocarbon gases over the equatorial Pacific-Ocean during Saga-3. J Geophys Res Atmos 98:16933–16947Google Scholar
  23. Avgoustidi V, Nightingale PD, Joint I, Steinke M, Turner SM, Hopkins FE, Liss PS (2012) Decreased marine dimethyl sulfide production under elevated CO2 levels in mesocosm and in vitro studies. Environ Chem 9:399–404Google Scholar
  24. Baker AR (2005) Marine aerosol iodine chemistry: the importance of soluble organic iodine. Environ Chem 2:295–298Google Scholar
  25. Baker JM, Reeves CE, Nightingale PD, Penkett SA, Gibb SW, Hatton AD (1999) Biological production of methyl bromide in the coastal waters of the North Sea and open ocean of the northeast Atlantic. Mar Chem 64:267–285Google Scholar
  26. Baker AR, Thompson D, Campos MLAM, Perry SJ, Jickells TD (2000) Iodine concentration and availability in atmospheric aerosol. Atmos Environ 34:4331–4336Google Scholar
  27. Bale C, Ingham T, Commane R, Heard D, Bloss W (2008) Novel measurements of atmospheric iodine species by resonance fluorescence. J Atmos Chem 60:51–70Google Scholar
  28. Ballschmiter K (2002) A marine source for alkyl nitrates. Science 197:1127–1128Google Scholar
  29. Bandy AR, Scott DL, Blomquist BW, Chen SM, Thornton DC (1992) Low yields of SO2 from dimethyl sulfide oxidation in the marine boundary layer. Geophys Res Lett 19:1125–1127Google Scholar
  30. Bandy AR, Thornton DC, Blomquist BW, Chen S, Wade TP, Ianni JC, Mitchell GM, Nadler W (1996) Chemistry of dimethyl sulfide in the equatorial Pacific atmosphere. Geophys Res Lett 23:741–744Google Scholar
  31. Bange HW, Williams J (2000) New directions: acetonitrile in atmospheric and biogeochemical cycles. Atmos Environ 34:4959–4960Google Scholar
  32. Bariteau L, Helmig D, Fairall CW, Hare JE, Hueber J, Lang EK (2010) Determination of oceanic ozone deposition by ship-borne eddy covariance flux measurements. Atmos Meas Tech 3:441–455Google Scholar
  33. Barnes I, Bastian V, Becker KH, Overath RD (1991) Kinetic studies of the reactions of IO, BrO and ClO with DMS. Int J Chem Kinet 23:579–591Google Scholar
  34. Barnes I, Hjorth J, Mihalopoulos N (2006) Dimethyl sulfide and dimethyl sulfoxide and their oxidation in the atmosphere. Chem Rev 106:940Google Scholar
  35. Bartnicki EW, Castro CE (1994) Biodehalogenation – rapid xxidative-metabolism of monohalomethanes and polyhalomethanes by methylosinus-trichosporium Ob-3b. Environ Toxicol Chem 13:241–245Google Scholar
  36. Bates TS, Kiene RP, Wolfe GV, Matrai PA, Chavez FP, Buck KR, Blomquist BW, Cuhel RL (1994) The cycling of sulfur in surface seawater of the Northeast Pacific. J Geophys Res Ocean 99:7835–7843Google Scholar
  37. Bates TS, Kelly KC, Johnson JE, Gammon RH (1995) Regional and seasonal variations in the flux of oceanic carbon monoxide to the atmosphere. J Geophys Res 100:23093–23101Google Scholar
  38. Beale R, Liss PS, Nightingale PD (2010) First oceanic measurements of ethanol and propanol. Geophys Res Lett 37, L24607. doi: 10.1029/2010GL045534CrossRefGoogle Scholar
  39. Bell N, Hsu L, Jacob DJ, Schultz MG, Blake DR, Butler JH, King DB, Lobert JM, Maier-Reimer E (2002) Methyl iodide: atmospheric budget and use as a tracer of marine convection in global models. J Geophys Res 107(D17):4340. doi: 10.1029/2001JD001151CrossRefGoogle Scholar
  40. Bell TG, Johnson MT, Jickells TD, Liss PS (2007) Ammonia/ammonium dissociation coefficient in seawater: a significant numerical correction. Environ Chem 4:183–186. doi: 10.1071/EN07032CrossRefGoogle Scholar
  41. Belviso S, Caniaux G (2009) A new assessment in North Atlantic waters of the relationship between DMS concentration and the upper mixed layer solar radiation dose. Glob Biogeochem Cycle 23. doi:Gb1014 10.1029/2008gb003382Google Scholar
  42. Benson DR, Yu JH, Markovich A, Lee SH (2011) Ternary homogeneous nucleation of H2SO4, NH3, and H2O under conditions relevant to the lower troposphere. Atmos Chem Phys 11:4755–4766Google Scholar
  43. Beyersdorf AJ, Blake DR, Swanson A, Meinardi S, Rowland FS, Davis S (2010) Abundances and variability of tropsopheric volatile organic compounds at the South Pole and other Antarctic locations. Atmos Environ 44:4565–4574Google Scholar
  44. Blake NJ et al (1999) Aircraft measurements of the latitudinal, vertical, and seasonal variations of NMHCs, methyl nitrate, methyl halides, and DMS during the First Aerosol Characterization Experiment (ACE 1). J Geophys Res 104:21803–21817Google Scholar
  45. Blake NJ, Blake DR, Swanson AL, Atlas E, Flocke F, Rowland FS (2003) Latitudinal, vertical, and seasonal variations of C1–C4 alkyl nitrates in the troposphere over the Pacific Ocean during PEM-Tropics A and B: Oceanic and continental sources. J Geophys Res 108:8242. doi: 10.1029/2001JD001444CrossRefGoogle Scholar
  46. Blando JD, Turpin BJ (2000) Secondary organic aerosol formation in cloud and fog droplets: a literature evaluation of plausibility. Atmos Environ 34:1623–1632Google Scholar
  47. Bloss WJ, Lee JD, Johnson GP, Sommariva R, Heard DE, Saiz-Lopez A, Plane JMC, McFiggans G, Coe H, Flynn M, Williams P, Rickard AR, Fleming ZL (2005) Impact of halogen monoxide chemistry upon boundary layer OH and HO2 concentrations at a coastal site. Geophys Res Lett 32, L06814Google Scholar
  48. Blough NV (1997) Photochemistry in the sea-surface microlayer. In: Duce R, Liss PS (eds) The sea-surface and global change. Cambridge University Press, Cambridge, UKGoogle Scholar
  49. Blough NV, Zafiriou OC (1985) Reactions of superoxide with nitric oxide to form peroxonitrate in alkaline aqueous solution. Inorg Chem 24:3502–3504Google Scholar
  50. Bonsang B, Kanakidou M, Lambert G, Monfray P (1988) The marine source of C2–C6 aliphatic hydrocarbons. J Atmos Chem 6:3–20Google Scholar
  51. Bonsang B, Polle C, Lambert G (1992) Evidence for marine production of isoprene. Geophys Res Lett 19:1129–1132Google Scholar
  52. Bonsang B, Al Aarbaour A, Sciare J (2008) Diurnal variation of nonmethane hydrocarbons in the subantarctic atmosphere. Environ Chem 5:16–23. doi: 10.1071/EN07018CrossRefGoogle Scholar
  53. Bonsang B, Gros V, Peeken I, Yassaa N, Bluhm K, Zoellner E, Sarda-Esteve R, Williams J (2010) Isoprene from phytoplankton monocultures: the relationship with chlorophyll-a, cell volume and carbon content. Environ Chem 7:554–563. doi: 10.1071/EN09156CrossRefGoogle Scholar
  54. Bopp L, Aumont O, Belviso S, Monfray P (2003) Potential impact of climate change on marine dimethyl sulfide emissions. Tellus 55B:11–22Google Scholar
  55. Bottenheim JW, Netcheva S, Morin S, Nghiem SV (2009) Ozone in the boundary layer air over the Arctic Ocean: measurements during the TARA transpolar drift 2006–2008. Atmos Chem Phys 9:4545–4557Google Scholar
  56. Bouwman A, Lee D, Asman W, Dentener F, Van Der Hoek K, Olivier J (1997) A global high-resolution emission inventory for ammonia. Glob Biogeochem Cycle 11:561–587Google Scholar
  57. Breider TJ, Chipperfield MP, Richards NAD, Carslaw KS, Mann GW, Spracklen DV (2010) Impact of BrO on dimethylsulfide in the remote marine boundary layer. Geophys Res Lett 37, L02807. doi: 10.1029/2009GL040868CrossRefGoogle Scholar
  58. Broadgate W, Liss PS, Penkett SA (1997) Seasonal emissions of isoprene and other reactive hydrocarbon gases from the oceans. Geophys Res Lett 24:2675–2878Google Scholar
  59. Brownell DK, Moore RW, Cullen JJ (2010) Production of methyl halides by Prochlorococcus and Synechococcus. Glob Biogeochem Cycle 24, GB2002. doi: 10.1029/2009GB003671CrossRefGoogle Scholar
  60. Brüchert V, Currie B, Peard K (2009) Hydrogen sulphide and methane emissions on the central Namibian shelf. Prog Oceanogr 83:169–179Google Scholar
  61. Butler A, Walker JV (1993) Marine haloperoxidases. Chem Rev 93:1937–1944Google Scholar
  62. Cameron-Smith P, Elliott S, Maltrud M, Erickson D, Wingenter O (2011) Changes in dimethyl sulfide oceanic distribution due to climate change. Geophys Res Lett 38. L07704. doi: 10.1029/2011gl047069Google Scholar
  63. Capone DG (2000) The marine microbial nitrogen cycle. In: Kirchman DL (ed) Microbial ecology of the oceans. Wiley, New YorkGoogle Scholar
  64. Carpenter LJ, Liss PS (2000) On temperate sources of bromoform and other reactive organic bromine gases. J Geophys Res Atmos 105:20539–20547Google Scholar
  65. Carpenter LJ, Sturges WT, Penkett SA, Liss PS, Alicke B, Hebestreit K, Platt U (1999) Short-lived alkyl iodides and bromides at Mace Head, Ireland: links to biogenic sources and halogen oxide production. J Geophys Res Atmos 104:1679–1689Google Scholar
  66. Carpenter LJ, Malin G, Liss PS, Kupper FC (2000) Novel biogenic iodine-containing trihalomethanes and other short-lived halocarbons in the coastal East Atlantic. Glob Biogeochem Cycle 14:1191–1204Google Scholar
  67. Carpenter LJ, Lewis AC, Hopkins JR, Read KA, Longley ID, Gallagher MW (2004) Uptake of methanol to the North Atlantic Ocean surface. Global Biogeochem Cycle 18, GB4027. doi: 10.1029/2004GB002294CrossRefGoogle Scholar
  68. Chameides WL, Davis D (1980) Iodine: its possible role in tropospheric photochemistry. J Geophys Res 85:7383–7398Google Scholar
  69. Chameides WL, Stelson AW (1992) Aqueous-phase chemical processes in deliquescent sea-salt aerosols: a mechanism that couples the atmospheric cycles of S and sea salt. J Geophys Res 97:20565–20580Google Scholar
  70. Chang W, Heikes BG, Lee M (2004) Ozone deposition to the sea surface: chemical enhancement and wind speed dependence. Atmos Environ 38:1053–1059Google Scholar
  71. Charlson RJ, Lovelock JE, Andreae MO, Warren SG (1987) Oceanic phytoplankton, atmospheric sulphur, cloud albedo and climate. Nature 326:655–661Google Scholar
  72. Chuck AL, Turner SM, Liss PS (2002) Direct evidence for a marine source of alkyl nitrates. Science 297:1151–1154Google Scholar
  73. Class TH, Ballschmiter K (1988) Chemistry of organic traces in air: sources and distribution of bromo- and bromochloromethanes in marine air and surface water of the Atlantic Ocean. J Atmos Chem 6:35–46Google Scholar
  74. Coffman DJ, Hegg DA (1995) A preliminary study of the effect of ammonia on particle nucleation in the marine boundary layer. J Geophys Res Atmos 100:7147. doi: 10.1029/94JD03253CrossRefGoogle Scholar
  75. Conley SA, Faloona I, Miller GH, Lenschow D, Blomquist B, Bandy A (2009) Closing the dimethyl sulfide budget in the tropical marine boundary layer during the Pacific atmospheric sulfur experiment. Atmos Chem Phys 9:8745–8756Google Scholar
  76. Conrad R, Seiler W (1980) Photo-oxidative production and microbial consumption of carbon monoxide in seawater. FEMS Microbiol Lett 9:61–64Google Scholar
  77. Conrad R, Seiler W (1986) Exchange of CO and H2 between ocean and atmosphere. In: Buat-Menard P (ed) The role of air-sea exchange in geochemical cycling. Reidel, DordrechtGoogle Scholar
  78. Corbett JJ, Fischbeck PS, Pandis SN (1999) Global nitrogen and sulfur inventories for oceangoing ships. J Geophys Res 104:3457–3470Google Scholar
  79. Cox ML, Sturrock GA, Fraser PJ, Siems S, Krummel PB, O’Doherty S (2003) Regional sources of methyl chloride, chloroform and dichloromethane identified from AGAGE observations at Cape Grim, Tasmania, 1998–2000. J Atmos Chem 45:79–99Google Scholar
  80. Dacey JWH, Howse FA, Michaels AF, Wakeham SG (1998) Temporal variability of dimethylsulfide and dimethylsulfoniopropionate in the Sargasso Sea. Deep Sea Res Part I 45:2085–2104Google Scholar
  81. Dahl EE (2005) Photochemical production of oceanic alkyl nitrates. Dissertation, University of California, Irvine, 178ppGoogle Scholar
  82. Dahl EE, Saltzman ES (2008) Alkyl nitrate photochemical production rates in North Pacific seawater. Mar Chem 112:137–141Google Scholar
  83. Dahl EE, Saltzman ES, de Bruyn WJ (2003) The aqueous phase yield of alkyl nitrates from ROO + NO: implications for photochemical production in seawater. Geophys Res Lett 30:1271Google Scholar
  84. Dahl EE, Yvon-Lewis SA, Saltzman ES (2005) Saturation anomalies of alkyl nitrates in the tropical Pacific Ocean. Geophys Res Lett 32, L20817Google Scholar
  85. Dahl EE, Yvon-Lewis SA, Saltzman ES (2007) Alkyl nitrate (C1–C3) depth profiles in the tropical Pacific Ocean. J Geophys Res 112, C01012Google Scholar
  86. Dahl EE, Heiss EM, Murawski K (2012a) The effects of dissolved organic matter on alkyl nitrate production during GOMECC and laboratory studies. Mar Chem 142–144:11–17. doi: 10.1016/j.marchem.2012.08.001CrossRefGoogle Scholar
  87. Dahl EE, Kellogg D, Escobar C (2012b) Are diatoms a source of oceanic alkyl nitrates?. SOLAS Open Science Conference, Cle Elum Washington, May 7–10Google Scholar
  88. Day DA, Faloona I (2009) Carbon monoxide and chromophoric dissolved organic matter cycles in the shelf waters of the Northern California upwelling system. J Geophys Res Ocean 114, CO1006. doi: 10.1029/2007JC004590CrossRefGoogle Scholar
  89. de Bruyn WJ, Clark PL, Takehara C (2011) Photochemical production of formaldehyde, acetaldehyde, and acetone from chromophoric dissolved organic matter in coastal waters. J Photoch Photobio A 226:16–22Google Scholar
  90. de Gouw JA, Warneke C, Parrish DD, Holloway JS, Trainer M, Fehsenfeld FC (2003) Emission sources and ocean uptake of acetonitrile (CH3CN) in the atmosphere. J Geophys Res 108(D11):4329. doi: 10.1029/2002JD002897CrossRefGoogle Scholar
  91. Dentener FJ, Crutzen PJ (1994) A three-dimensional model of the global ammonia cycle. J Atmos Chem 19:331–369. doi: 10.1007/BF00694492CrossRefGoogle Scholar
  92. Dentener F et al (2006) Nitrogen and sulfur deposition on regional and global scales: a multimodel evaluation. Global Biogeochem Cycle 20, GB4003. doi: 10.1029/2005GB002672CrossRefGoogle Scholar
  93. Derevianko GJ, Deutsch C, Hall A (2009) On the relationship between ocean DMS and solar radiation. Geophys Res Lett 36, L17606. doi: 10.1029/2009GL039412CrossRefGoogle Scholar
  94. Dillon TJ, Tucceri ME, Sander R, Crowley JN (2008) LIF studies of iodine oxide chemistry Part 3. Reactions IO + NO3 -> OIO + NO2, I + NO3 -> IO + NO2, and CH2I + O2 -> (products): implications for the chemistry of the marine atmosphere at night. Phys Chem Chem Phys 10:1540–1554Google Scholar
  95. Dimmer CH, Simmonds PG, Nickless G, Bassford MR (2001) Biogenic halomethanes from Irish peatland ecosystems. Atmos Environ 35:321–330Google Scholar
  96. Dixon JL, Beale R, Nightingale PD (2011a) Microbial methanol uptake in the northeast Atlantic waters. ISME J 5:704–716Google Scholar
  97. Dixon JL, Beale R, Nightingale PD (2011b) Rapid biological oxidation of methanol in the tropical Atlantic: significance as a microbial carbon source. Biogeosciences 8:2707–2716Google Scholar
  98. Donahue NM, Prinn RG (1993) Non-methane hydrocarbon chemistry in the remote marine boundary layer. J Geophys Res 95:18387–18411Google Scholar
  99. Duce RA, Woodhouse AH, Moyers JL (1967) Variation of ion ratios with size among particles in tropical oceanic air. Tellus 19:367–379Google Scholar
  100. Dufour G, Szopa S, Hauglustaine DA, Boone CD, Rinsland CP, Bernath PF (2007) The influence of biogenic emissions on uppert-tropospheric methanol as revealed from space. Atmos Chem Phys 7:6119–6129Google Scholar
  101. Duncan BN, Logan JA, Bey I, Megretskaia IA, Yantosca RM, Novelli PC, Jones NB, Rinsland CP (2007) Global budget of CO, 1988–1997: source estimates and validation with a global model. J Geophys Res Atmos 112, D22301. doi: 10.1029/2007JD008459CrossRefGoogle Scholar
  102. Ehrhardt M, Weber RR (1991) Formation of low molecular weight carbonyl compounds by sensitized photochemical decomposition of aliphatic hydrocarbons in seawater. Fresenius J Anal Chem 339:772–776Google Scholar
  103. Ekdahl A, Pedersen M, Abrahamsson K (1998) A study of the diurnal variation of biogenic volatile halocarbons. Mar Chem 63:1–8Google Scholar
  104. Elias T, Szopa S, Zahn A, Schuck T, Brenninkmeijer C, Sprung D, Slemr F (2011) Acetone variability in the upper troposphere: analysis of CARIBIC observations and LMDz-INCA chemistry-climate model simulations. Atmos Chem Phys 11:8053–8074Google Scholar
  105. Elliott S (1989) The effect of hydrogen peroxide on the alkaline hydrolysis of carbon disulfide. Environ Sci Technol 24:264–267Google Scholar
  106. Elliott S, Rowland FS (1993) Nucleophilic substitution rates and solubilities for methyl halides in seawater. Geophys Res Lett 20:1043–1046Google Scholar
  107. Elliott S, Rowland FS (1995) Methyl halide hydrolysis rates in natural-waters. J Atmos Chem 20:229–236Google Scholar
  108. Eyring V, Isaksen ISA, Berntsen T, Collins WJ, Corbett JJ, Endresen O, Grainger RG, Moldanova J, Schlager H, Stevenson DS (2010) Transport impacts on atmosphere and climate: shipping. Atmos Environ 44:4735–4771Google Scholar
  109. Facchini MC (2008) Important source of marine secondary organic aerosol from biogenic amines. Environ Sci Tech 42:9116–9121. doi: 10.1021/es8018385CrossRefGoogle Scholar
  110. Fairall CW, Helmig D, Ganzefeld L, Hare J (2007) Water-side turbulence enhancement of ozone deposition to the ocean. Atmos Chem Phys 7:443–451Google Scholar
  111. Faloona I (2009) Sulfur processing in the marine atmospheric boundary layer: a review and critical assessment of modeling uncertainties. Atmos Environ 43:2841–2854Google Scholar
  112. Fenical W (1982) Natural products chemistry in the marine environment. Science 215:923–928Google Scholar
  113. Fichot CG, Miller WL (2011) An approach to quantify depth-resolved marine photochemical fluxes using remote sensing: application to carbon monoxide (CO) photoproduction. Rem Sens Environ 114:1363–1377Google Scholar
  114. Finley BD, Saltzman ES (2008) Observations of Cl2, Br2, and I2 in coastal marine air. J Geophys Res 113, D21301Google Scholar
  115. Fischer R, Weller R, Jacobi HW, Ballschmiter K (2002) Levels and pattern of volatile organic nitrates and halocarbons in the air at Neumayer Station (70°S) Antarctica. Chemosphere 48:981–992Google Scholar
  116. Flanagan RJ, Geever M, O’Dowd CD (2005) Direct measurements of new-particle fluxes in the coastal environment. Environ Chem 2:256–259Google Scholar
  117. Flock OR, Andreae MO (1996) Photochemical and non-photochemical formation and destruction of carbonyl sulfide and methyl mercaptan in ocean waters. Mar Chem 54:11–26Google Scholar
  118. Fuse H, Inoue H, Murakami K, Takimura O, Yamaoko Y (2003) Production of free and organic iodine by Roseovarius spp. FEMS Microbiol Lett 229:189–194Google Scholar
  119. Gabric A, Gregg W, Najjar R, Erickson D, Matrai P (2001) Modeling the biogeochemical cycle of dimethylsulfide in the upper ocean: a review. Chemosphere 3:377–392Google Scholar
  120. Gabric AJ, Simo R, Cropp RA, Hirst AC, Dachs J (2004) Modeling estimates of the global emission of dimethylsulfide under enhanced greenhouse conditions. Global Biogeochem Cycle 18, GB2014. doi: 10.1029/2003GB002183CrossRefGoogle Scholar
  121. Galloway JN (2004) Nitrogen cycles: past, present and future. Biogeochemistry 70:153–226. doi: 10.1007/s10533-004-0370-0CrossRefGoogle Scholar
  122. Gantt B, Meskhidze N, Kamykowski D (2009) A physically based quantification of marine isoprene and primary organic aerosol emissions. Atmos Chem Phys 9:4915–4927Google Scholar
  123. Gantt B, Meskhidze N, Carlton AG (2010) The contribution of marine organics to the air quality of the western United States. Atmos Chem Phys 10:7415–7423Google Scholar
  124. Ganzeveld L, Helmig D, Fairall CW, Hare J, Pozzer A (2009) Atmosphere–ocean ozone exchange: a global modeling study of biogeochemical, atmospheric, and waterside turbulence dependencies. Glob Biogeochem Cycle 23, GB4021. doi: 10.1029/2008GB003301CrossRefGoogle Scholar
  125. Ge X, Wexler AS, Clegg SL (2011) Atmospheric amines – part I. A review. Atmos Environ 45:524–546. doi:16/j.atmosenv.2010.10.012Google Scholar
  126. Geen CE (1992) Selected marine sources and sinks of bromoform and other low molecular weight organobromines. Dalhousie University, Halifax, 109ppGoogle Scholar
  127. Gibb SW, Mantoura RFC, Liss PS (1999) Ocean–atmosphere exchange and atmospheric speciation of ammonia and methylamines in the region of the NW Arabian Sea. Glob Biogeochem Cycle 13:161–178Google Scholar
  128. Gilfedder BS, Lai S, Petri M, Biester H, Hoffmann T (2008) Iodine speciation in rain, snow and aerosols. Atmos Chem Phys 8:6069–6084Google Scholar
  129. Gilfedder BS, Chance R, Dettmann U, Lai SC, Baker AR (2010) Determination of total and non-water soluble iodine in atmospheric aerosols by thermal extraction and spectrometric detection (TESI). Anal Bioanal Chem 398:519–526Google Scholar
  130. Gómez Martín JC, Ashworth SH, Mahajan AS, Plane JMC (2009) Photochemistry of OIO: laboratory study and atmospheric implications. Geophys Res Lett 36, L09802. doi:09810.01029/02009GL037642Google Scholar
  131. Gómez Martín JC, Blahins J, Gross U, Ingham T, Goddard A, Mahajan AS, Ubelis A, Saiz-López A (2011) In situ detection of atomic and molecular iodine using Resonance and Off-Resonance Fluorescence by Lamp Excitation: ROFLEX. Atmos Meas Tech 4:29–45Google Scholar
  132. Goodwin KD, Lidstrom ME, Oremland RS (1997) Marine bacterial degradation of brominated methanes. Environ Sci Tech 31:3188–3192Google Scholar
  133. Gravestock T, Blitz MA, Heard DE (2005) Kinetics study of the reaction of iodine monoxide radicals with dimethyl sulfide. Phys Chem Chem Phys 7:2173–2181Google Scholar
  134. Gray BA, Wang Y, Gu D, Bandy A, Mauldin L, Clarke A, Alexander B, Davis DD (2010) Sources, transport, and sinks of SO2 over the equatorial Pacific during the Pacific atmospheric sulfur experiment. J Atmos Chem. doi: 10.1007/s10874-010-9177-7CrossRefGoogle Scholar
  135. Gros V, Peeken I, Bluhm K, Zollner E, Sarda-Esteve R, Bonsang B (2009) Carbon monoxide emissions by phytoplankton: evidence from laboratory experiments. Environ Chem 6:369–379Google Scholar
  136. Groszko W, Moore RM (1998) Ocean–atmosphere exchange of methyl bromide: NW Atlantic and Pacific Ocean studies. J Geophys Res Atmos 103:16737–16741Google Scholar
  137. Grzybowski W (2003) Are data on light-induced ammonium release from dissolved organic matter consistent? Chemosphere 52:933–936Google Scholar
  138. Gschwend PM, Macfarlane JK, Newman KA (1985) Volatile halogenated organic-compounds released to seawater from temperate marine macroalgae. Science 227:1033–1035Google Scholar
  139. Guenther A, Hewitt N, Erickson D, Fall R, Geron C, Graedel T, Harley P, Klinger L, Lerdau M, Mckay WA, Pierce T, Scholes B, Steinbrecher R, Tallamraju R, Taylor J, Zimmerman P (1995) A global model of natural volatile organic compound emissions. J Geophys Res 100:8873–8892Google Scholar
  140. Harrison JJ, Allen NDC, Bernath PF (2011a) Infrared absorption cross sections for acetone (propanone) in the 3 μm region. J Quant Spectrosc Rad 112:53–58Google Scholar
  141. Harrison JJ, Humpage N, Allen NDC, Waterfall AM, Bernath PF, Remedios JJ (2011b) Mid-Infrared absorption cross sections for acetone (propanone). J Quant Spectrosc Rad 112:457–464Google Scholar
  142. Hashimoto S et al (2009) Production and air-sea flux of halomethanes in the western subarctic Pacific in relation to phytoplankton pigment concentrations during the iron fertilization experiment (SEEDS II). Deep Sea Res II 56:2928–2935Google Scholar
  143. Heikes BG et al (2002) Atmospheric methanol budget and ocean implication. Glob Biogeochem Cycle 16:1133. doi: 10.1029/2002GB001895CrossRefGoogle Scholar
  144. Helmig D, Lang EK, Bariteau L, Boylan P, Fairall CW, Ganzeveld L, Hare JE, Hueber J, Pallandt M (2012) Atmosphere–ocean ozone fluxes during the TexAQS 2006, STRATUS 2006, GOMECC 2007, GasEX 2008, and AMMA 2008 cruises. J Geophys Res 117, D04305. doi: 10.1029/2011JD015955CrossRefGoogle Scholar
  145. Hense I, Quack B (2009) Modelling the vertical distribution of bromoform in the upper water column of the tropical Atlantic Ocean. Biogeoscience 6:535–544Google Scholar
  146. Herndl GJ, Mullerniklas G, Frick J (1993) Major role of ultraviolet-B in controlling bacterioplankton growth in the surface-layer of the ocean. Nature 361:717–719Google Scholar
  147. Holland EA, Dentener FJ, Braswell BH, Sulzman JM (1999) Contemporary and pre-industrial global reactive nitrogen budgets. Biogeochemistry 46:7–43. doi: 10.1007/BF01007572CrossRefGoogle Scholar
  148. Hopkins FE, Turner SM, Nightingale PD, Steinke M, Bakker D, Liss PS (2010) Ocean acidification and marine trace gas emissions. Proc Natl Acad Sci USA 107:760–765Google Scholar
  149. Howard EC, Henriksen JR, Buchan A, Reisch CR, Buergmann H, Welsh R, Ye WY, Gonzalez JM, Mace K, Joye SB, Kiene RP, Whitman WB, Moran MA (2006) Bacterial taxa that limit sulfur flux from the ocean. Science 314:649–652Google Scholar
  150. Hu L, Yvon-Lewis SA, Liu Y, Salisbury JE, O’Hern JE (2010) Coastal emissions of methyl bromide and methyl chloride along the eastern Gulf of Mexico and the east coast of the United States. Glob Biogeochem Cycle 24, GB1007. doi: 10.1029/2009GB003514CrossRefGoogle Scholar
  151. Hudson ED, Ariya PA, Gelinas Y (2011) A method for the simultaneous quantification of 23 C1–C9 trace aldehydes and ketones in seawater. Environ Chem 8:441–449Google Scholar
  152. Hughes C, Chuck AL, Turner SM, Liss PS (2008a) Methyl and ethyl nitrate saturation anomalies in the Southern Ocean (36–65°S, 30–70°W). Environ Chem 5:11–15Google Scholar
  153. Hughes C, Chuck AL, Rossetti H, Mann PJ, Turner SM, Clarke A, Chance R, Liss PS (2009) Seasonal cycle of seawater bromoform and dibromomethane concentrations in a coastal bay on the western Antarctic Peninsula. Glob Biogeochem Cycle 23:2024. doi:10.1029/2008GB003268Google Scholar
  154. Hughes C, Malin G, Turley CM, Keely BJ, Nightingale PD, Liss PS (2008b) The production of volatile iodocarbons by biogenic marine aggregates. Limnol Oceanogr 53:867–872Google Scholar
  155. Hughes C, Kettle AJ, Unazi GA, Weston K, Jones MR, Johnson MT (2010) Seasonal variations in the concentrations of methyl and ethyl nitrate in a shallow freshwater lake. Limnol Oceanogr 55:305–314Google Scholar
  156. Hughes C, Franklin D, Malin G (2011) Iodomethane production by two important marine cyanobacteria; Prochlorococcus marinus (CCMP 2389) and Synechococcus sp. (2370). Mar Chem 125:19–25Google Scholar
  157. Ingham T, Bauer D, Sander R, Crutzen PJ, Crowley JN (1999) Kinetics and products of the reactions BrO + DMS and Br + DMS at 298 k. J Phys Chem A 103:7199–7209Google Scholar
  158. IPCC, Climate Change (2007) The physical science basis. Contribution of working group I to the fourth assessment, report of the intergovernmental panel on climate change, Cambridge University Press, Cambridge,UK/New YorkGoogle Scholar
  159. Jacob DJ, Field BD, Jin EM, Bey I, Li QB, Logan JA, Yantosca RM, Singh HB (2002) Atmospheric budget of acetone. J Geophys Res 107(D10). doi:10.1029/2001JD000694Google Scholar
  160. Jacob DJ, Field BD, Li QB, Blake DR, de Gouw J, Warneke C, Hansel A, Wisthaler A, Singh HB, Genther A (2005) Global budget of methanol: constraints from atmospheric observations. J Geophys Res 110, D08303. doi: 10.1029/2004JD005172CrossRefGoogle Scholar
  161. Jickells TD, Kelly SD, Baker AR, Biswas K, Dennis PF, Spokes LJ, Witt M, Yeatman SG (2003) Isotopic evidence for a marine ammonia source. Geophys Res Lett 30. doi:  10.1029/2002GL016728
  162. Jimenez JL, Bahreini R, Cocker DR III, Zhuang H, Varutbangkul V, Flagan RC, Seinfeld JH, O’Dowd CD, Hoffmann T (2003) New particle formation from photooxidation of diiodomethane (CH2I2). J Geophys Res 108:4733. doi: 10.1029/2003JD004249CrossRefGoogle Scholar
  163. Johnson MT (2010) A numerical scheme to calculate temperature and salinity dependent air-water transfer velocities for any gas. Ocean Sci 6:913–932. doi: 10.5194/os-6-913-2010CrossRefGoogle Scholar
  164. Johnson JE, Bates TS (1996) Sources and sinks of carbon monoxide in the mixed layer of the tropical South Pacific Ocean. Glob Biochem Cycle 10:347–359Google Scholar
  165. Johnson MT, Bell TG (2008) Coupling between dimethylsupfide emissions and the ocean–atmosphere exchange of ammonia. Environ Chem 5:259–267. doi: 10.1071/EN08030CrossRefGoogle Scholar
  166. Johnson MT, Sanders R, Avgoustidi V, Lucas MI, Brown L, Hansell DA, Moore CM, Gibb SW, Liss PS, Jickells TD (2007) Ammonium accumulation during a silicate-limited diatom bloom indicates the potential for ammonia emission events. Mar Chem 106:63–75. doi: 10.1016/j.marchem.2006.09.006CrossRefGoogle Scholar
  167. Johnson MT, Liss PS, Bell TG, Lesworth TJ, Baker AR, Hind AJ, Jickells TD, Biswas KF, Woodward EMS, Gibb SW (2008) Field observations of the ocean–atmosphere exchange of ammonia: fundamental importance of temperature as revealed by a comparison of high and low latitudes. Glob Biogeochem 22, GB1019. doi: 10.1029/2007GB003039CrossRefGoogle Scholar
  168. Johnson MT, Hughes C, Bell TG, Liss PS (2011) A Rumsfeldian analysis of uncertainty in air-sea gas exchange. In: Komori S, McGillis W, Kurose R (eds) Gas transfer at water surfaces 2010. Kyoto University Press, KyotoGoogle Scholar
  169. Jones CE, Carpenter LJ (2005) Solar photolysis of CH2I2, CH2ClI and CH2BrI in water, saltwater and seawater. Environ Sci Technol 39:6130–6138Google Scholar
  170. Jones AE, Weller R, Minikin A, Wolff EW, Sturges WT, Mcintyre HP, Leonard SR, Schrems O, Bauguitte S (1999) Oxidized nitrogen chemistry and speciation in the Antarctic troposphere. J Geophys Res 104:21355–21366Google Scholar
  171. Jones CE, Hornsby KE, Sommariva R, Dunk RM, von Glasow R, McFiggans G, Carpenter LJ (2010) Quantifying the contribution of marine organic gases to atmospheric iodine. Geophys Res Lett 37, L18804. doi: 10.1029/2010GL043990CrossRefGoogle Scholar
  172. Joseph DM, Ashworth SH, Plane JMC (2007) On the photochemistry of IONO2: absorption cross section (240–370 nm) and photolysis product yields at 248 nm. Phys Chem Chem Phys 9:5599–5607Google Scholar
  173. Kaltsoyannis N, Plane JMC (2008) Quantum chemical calculations on a selection of iodine-containing species (IO, OIO, INO3, (IO)2, I2O3, I2O4 and I2O5) of importance in the atmosphere. Phys Chem Chem Phys 10:1723–1733Google Scholar
  174. Karlsson A, Auer N, Schulz-Bull D, Abrahamsson K (2008) Cyanobacterial blooms in the Baltic – a source of halocarbons. Mar Chem 110:129–139Google Scholar
  175. Kato S, Watiri M, Nagao I, Uematsu M, Kajii Y (2009) Atmospheric trace gas measurements during SEEDS-II over the northwesternPacific. Deep Sea Res Part II: Topical Stud Oceanography 56:2918–2927. doi: Scholar
  176. Keene WC, Pszenny AAP (2004) Comment on: Laskin, et al., reactions at interfaces as a source of sulfate formation in sea-salt particles. Science 303:628a–628bGoogle Scholar
  177. Keppler F, Eiden R, Niedan V, Pracht J, Scholer HF (2000) Halocarbons produced by natural oxidation processes during degradation of organic matter. Nature 403:298–301Google Scholar
  178. Kettle AJ (2005) Diurnal cycling of carbon monoxide (CO) in the upper ocean near Bermuda. Ocean Model 8:337–367Google Scholar
  179. Kettle AJ, Andreae MO (2000) Flux of dimethylsulfide from the oceans: a comparison of updated data sets and flux models. J Geophys Res 105:26793–26808Google Scholar
  180. Kettle AJ, Andreae MO, Amouroux D, Andreae TW, Bates TS, Berresheim H, Bingemer H, Boniforti R, Curran MAJ, DiTullio GR, Helas G, Jones GB, Keller MD, Kiene RP, Leck C, Levasseur M, Malin G, Maspero M, Matrai P, McTaggart AR, Mihalopoulos N, Nguyen BC, Novo A, Putaud JP, Rapsomanikis S, Roberts G, Schebeske G, Sharma S, Simo R, Staubes R, Turner S, Uher G (1999) A global database of sea surface dimethylsulfide (DMS) measurements and a procedure to predict sea surface DMS as a function of latitude, longitude, and month. Glob Biogeochem Cycle 13:399–444Google Scholar
  181. Kettle AJ, Rhee TS, von Hobe M, Poulton A, Aiken J, Andreae MO (2001) Assessing the flux of different volatile sulfur gases from the ocean to the atmosphere. J Geophys Res 106:12193–12209Google Scholar
  182. Kettle AJ, Kuhn U, von Hobe M, Kesselmeier J, Liss PS, Andreae MO (2002) Comparing forward and inverse models to estimate the seasonal variation of hemisphere-integrated fluxes of carbonyl sulfide. Atmos Chem Phys 2:343–361Google Scholar
  183. Khalil A, Rasmussen RA, Hoyt SD (1983) Atmospheric chloroform (CHCl3): ocean-air exchange and global mass balance. Tellus 35B:226–274Google Scholar
  184. Kieber RJ, Mopper K (1990) Determination of picomolar concentrations of carbonyl compounds in natural waters, including seawater, by liquid chromatography. Environ Sci Technol 24:1477–1481Google Scholar
  185. Kieber RJ, Zhou X, Mopper K (1990) Formation of carbonyl compounds from UV induced photodegradation of humic substances in nature waters: fate of riverine carbon in the sea. Limnol Oceanogr 35:1503–1515Google Scholar
  186. Kiene RP (1996) Production of methanethiol from dimethylsulfoniopropionate in marine surface waters. Mar Chem 54:69–83Google Scholar
  187. Kiene RP, Linn LJ, Bruton JA (2000) New and important roles for DMSP in marine microbial communities. J Sea Res 43:209–224Google Scholar
  188. Kim D, Yamaguchi K, Oda T (2006) Nitric oxide synthase-like enzyme mediated nitric oxide generation in harmful red tide phytoplankton Chattonella marina. J Plankton Res 28:613–620Google Scholar
  189. Kim J-M, Lee K, Yang EJ, Shin K, Noh JH, Park K-T, Hyun B, Jeong H-J, Kim J-K, Kim KY, Kim M, Kim H-C, Jang P-G, Jang M-C (2010) Enhanced production of oceanic dimethylsulfide resulting from CO2-induced grazing activity in a high CO2 world. Environ Sci Technol 44:8140. doi: 10.1021/ES102028KCrossRefGoogle Scholar
  190. King GM (2001) Aspects of carbon monoxide production and oxidation by marine macroalgae. Mar Ecol Prog Ser 224:69–75Google Scholar
  191. King DB, Butler JH, Yvon-Lewis SA, Cotton SA (2002) Predicting oceanic methyl bromide saturation from SST. Geophys Res Lett 29:2199. doi: 10.1029/2002GLO16091CrossRefGoogle Scholar
  192. Kirkby J et al (2011) Role of sulphuric acid, ammonia and galactic cosmic rays in atmospheric aerosol nucleation. Nature 476:429–433. doi: 10.1038/nature10343CrossRefGoogle Scholar
  193. Kirst GO, Thiel C, Wolff H, Nothnagel J, Wanzek M, Ulmke R (1991) Dimethylsulfoniopropionate (DMSP) in ice-algae and its possible biological role. Mar Chem 35:381–388Google Scholar
  194. Kitidis V, Uher G, Upstill-Goddard RC, Mantoura RFC, Spyres G, Woodward EMS (2006) Photochemical production of ammonium in the oligotrophic Cyprus Gyre (Eastern Mediterranean). Biogeosciences 3:439–449. doi: 10.5194/bg-3-439-2006CrossRefGoogle Scholar
  195. Klick S (1992) Seasonal-variations of biogenic and anthropogenic halocarbons in seawater from a coastal site. Limnol Oceanogr 37:1579–1585Google Scholar
  196. Klick S, Abrahamsson K (1992) Biogenic volatile iodated hydrocarbons in the ocean. J Geophys Res 97(C8):12683–12687. doi: 10.1029/92JC00948CrossRefGoogle Scholar
  197. Kloster S, Six KD, Feichter J, Maier-Reimer E, Roeckner E, Wetzel P, Stier P, Esch M (2007) Response of dimethylsulfide (DMS) in the ocean and atmosphere to global warming. J Geophys Res Biogeosci 112 (G3), G03005. doi: 10.1029/2006jg000224Google Scholar
  198. Knepp TN, Bottenheim J, Carlsen M, Donohoue D, Friederich G, Matrai PA, Netcheva S, Perovich DK, Santini R, Shepson PB, Simpson W, Stehle T, Valentic T, Williams C, Wyss PJ (2010) Development on an autonomous sea ice tethered buoy for the study of ocean–atmosphere-sea ice-snow pack interaction: the O-buoy. Atmos Meas Tech 3:249–261Google Scholar
  199. Koga S, Tanaka H (1993) Numerical study of the oxidation process of dimethylsulfide in the marine atmosphere. J Atmos Chem 17:201–228Google Scholar
  200. Koga S, Tanaka H (1996) Simulation of seasonal variations of sulphur compounds in the remote marine atmosphere. J Atmos Chem 23:163–192Google Scholar
  201. Korhonen P, Kulmala M, Laaksonen A, Viisanen Y, McGraw R, Seinfeld JH (1999) Ternary nucleation of H2SO4, NH3, and H2O in the atmosphere. J Geophys Res 104(D21):26349. doi: 10.1029/1999JD900784CrossRefGoogle Scholar
  202. Korhonen H, Carslaw KS, Spracklen DV, Mann GW, Woodhouse MT (2008) Influence of oceanic dimethyl sulfide emissions on cloud condensation nuclei concentrations and seasonality over the remote Southern Hemisphere oceans: a global model study. J Geophys Res 113, D15204. doi: 10.1029/2007JD009718CrossRefGoogle Scholar
  203. Kreidenweis SM, Seinfeld JH (1988) Nucleation of sulfuric acid-water solution particles: implications for the atmospheric chemistry of organosulphur species. Atmos Environ 22:283–296Google Scholar
  204. Kulmala M, Kerminen V-M (2008) On the formation and growth of atmospheric nanoparticles. Atmos Res 90:132–150Google Scholar
  205. Kurten T, Loukonen V, Vehkkamaki H, Kulmala M (2008) Amines are likely to enhance neutral and ion-induced sulfuric acid-water nucleation in the atmosphere more effectively than ammonia. Atmos Chem Phys 8:4095–4103Google Scholar
  206. Küpper FC, Carpenter LJ, McFiggans GB, Palmer CJ, Waite TJ, Boneberg EM, Woitsch S, Weiller M, Abela R, Grolimund D, Potin P, Butler A, Luther GW III, Kurtén T, Loukonen V, Vehkamäki H, Kulmala M (2008) Amines are likely to enhance neutral and ion-induced sulfuric acid-water nucleation in the atmosphere more effectively than ammonia. Atmos Chem Phys 8:4095–4103. doi: 10.5194/acp-8-4095-2008CrossRefGoogle Scholar
  207. Lamarque JF, Hess P, Emmons L, Buja L, Washington W, Granier C (2005) Tropospheric ozone evolution between 1890 and 1990. J Geophys Res Atmos 110, D08304. doi: 10.1029/2004JD005537CrossRefGoogle Scholar
  208. Lana A, Bell TG, Simo R, Vallina SM, Ballabrera-Poy J, Kettle AJ, Dachs J, Bopp L, Saltzman ES, Stefels J, Johnson JE, Liss PS (2011) An updated climatology of surface dimethlysulfide concentrations and emission fluxes in the global ocean. Glob Biogeochem Cycle 25, GB1004. doi: 10.1029/2010GB003850CrossRefGoogle Scholar
  209. Lary DJ (1996) Gas phase atmospheric bromine photochemistry. J Geophys Res 101:1505–1516Google Scholar
  210. Lary DJ, Shallcross DE (2000) Centrol role of carbonyl compounds in atmospheric chemistry. J Geophys Res 105:19771–19778Google Scholar
  211. Laskin A, Gaspar DJ, Wang W, Hunt SW, Cowin JP, Colson SD, Finlayson-Pitts BJ (2003) Reactions at interfaces as a source of sulfate formation in sea-salt particles. Science 301:340–344Google Scholar
  212. Laturnus F, Wiencke C, Adams FC (1998) Influence of light conditions on the release of volatile halocarbons by Antarctic macroalgae. Mar Environ Res 45:285–294Google Scholar
  213. Law CS (2008) Predicting and monitoring the effects of large-scale ocean iron fertilization on marine trace gas emissions. Mar Ecol Progr Ser 364:283–288Google Scholar
  214. Lawler MJ, Finley BD, Keene WC, Pszenny AAP, Read KA, von Glasow R, Saltzman ES (2009) Pollution-enhanced reactive chlorine chemistry in the eastern tropical Atlantic boundary layer. Geophys Res Lett 36, L08810. doi: 10.1029/2008GL036666CrossRefGoogle Scholar
  215. Lawler MJ, Sander R, Carpenter LJ, Lee JD, von Glasow R, Sommariva R, Saltzman ES (2011) HOCl and Cl2 observations in marine air. Atmos Chem Phys 11:7617–7628Google Scholar
  216. Le Clainche Y, Vezina A, Levasseur M, Cropp RA, Gunson JR, Vallina SM, Vogt M, Lancelot C, Allen JI, Archer SD, Bopp L, Deal C, Elliott S, Jin M, Malin G, Schoemann V, Simo R, Six KD, Stefels J (2010) A first appraisal of prognostic ocean DMS models and prospects for their use in climate models. Glob Biogeo Cycles 24, Gb3021. doi: 10.1029/2009gb003721Google Scholar
  217. Leck C, Bigg EK (1999) Aerosol production over remote marine areas – a new route. Geophys Res Lett 26:3577–3581Google Scholar
  218. Lelieveld J, Dentener FJ (2000) What controls tropospheric ozone? J Geophys Res 105:3531–3551Google Scholar
  219. Lelieveld J, Van Aardenne J, Fisher H, De Reus M, Williams J, Winkler P (2004) Increasing ozone over the Atlantic Ocean. Science 304:1483–1487Google Scholar
  220. Lenschow DH, Pearson R, Stankov BB (1982) Measurements of ozone vertical flux to ocean and forest. J Geophys Res Ocean Atmos 87(NC11):8833–8837Google Scholar
  221. Levasseur M, Scarratt MG, Michaud S, Merzouk A, Wong CS, Arychuk M, Richardson W, Rivkin RB, Hale M, Wong E, Marchetti A, Kiyosawa H (2006) DMSP and DMS dynamics during a mesoscale iron fertilization experiment in the Northeast Pacific – Part 1: temporal and vertical distributions. Deep Sea Res Part II 53:2353–2369Google Scholar
  222. Lewis ER, Schwartz SE (2004) Sea salt aerosol production, vol 152, Geophysical monograph. American Geophysical Union, Washington, DCGoogle Scholar
  223. Lewis AC, Hopkins JR, Carpenter LJ, Stanton J, Read KA, Pilling MJ (2005) Sourcs and sinks of acetone methanol, and acetaldehyde in North Atlantic marine air. Atmos Chem Phys 5:1963–1974Google Scholar
  224. Li Q, Jacob DJ, Bey I, Yantosca RM, Zhao Y, Kondo Y, Notholt J (2000) Atmospheric hydrogen cyanide (HCN): biomass burning source, oceanic sink? Geophys Res Lett 27:357–360Google Scholar
  225. Li QB et al (2002) Transatlantic transport of pollution and its effects on surface ozone in Europe and North America. J Geophys Res Atmos 107:4166. doi: 10.1029/2001JD001422CrossRefGoogle Scholar
  226. Liss PS, Slater PG (1974) Flux of gases across the air-sea interface. Nature 247:181–184. doi: 10.1038/247181a0CrossRefGoogle Scholar
  227. Liss PS, Chuck A, Bakker D, Turner S (2005) Ocean fertilization with iron: effects on climate and air quality. Tellus 57B:269–271Google Scholar
  228. Lobert JM, Butler JH, Montzka SA, Geller LS, Myers RC, Elkins JW (1995) A net sink for atmospheric CH3Br in the East Pacific-Ocean. Science 267(5200):1002–1005Google Scholar
  229. Loewus MW, Delwiche CC (1963) Carbon monoxide production by algae. Plant Physiol 38:371–374Google Scholar
  230. Lovelock JE, Maggs RJ, Rasmussen RA (1972) Atmospheric dimethyl sulphide and the natural sulphur cycle. Nature 237:452–453Google Scholar
  231. Luo G, Yu F (2010) A numerical evaluation of global oceanic emissions of pinene and isoprene. Atmos Chem Phys 10:2007–2015Google Scholar
  232. Lupu A, Kaminski JW, Neary L, McConnell JC, Toyota K, Rinsland CP, Bernath PF, Walker KA, Boone CD, Nagaham Y, Suzuki K (2009) Hydrogen cyanide in the upper troposphere: GEM-AQ simulation and comparison with ACE-FTS observations. Atmos Chem Phys 9:4301–4313Google Scholar
  233. Mabey W, Mill T (1978) Critical-review of hydrolysis of organic-compounds in water under environmental-conditions. J Phys Chem Ref Data 7:383–415Google Scholar
  234. Mahajan AS, Oetjen H, Saiz-Lopez A, Lee JD, McFiggans GB, Plane JMC (2009) Reactive iodine species in a semi-polluted environment. Geophys Res Lett 36, L16803. doi:16810.11029/12009GL038018Google Scholar
  235. Mahajan AS, Plane JMC, Oetjen H, Mendes L, Saunders RW, Saiz-Lopez A, Jones CE, Carpenter LJ, McFiggans GB (2010a) Measurement and modelling of tropospheric reactive halogen species over the tropical Atlantic Ocean. Atmos Chem Phys 10:4611–4624Google Scholar
  236. Mahajan AS, Shaw M, Oetjen H, Hornsby KE, Carpenter LJ, Kalescheke L, Tian-Kunze X, Lee JD, Moller SJ, Edwards P, Commane R, Ingham T, Heard DE, Plane JMC (2010b) Evidence of reactive iodine chemistry in the Arctic boundary layer. J Geophys Res 115, D20303. doi: 10.1029/2009JD013665CrossRefGoogle Scholar
  237. Mäkelä JM, Hoffmann T, Holzke C, Väkevä M, Suni T, Mattila T, Aalto PP, Tapper U, Kauppinen EI, O’Dowd CD (2002) Biogenic iodine emissions and identification of end-products in coastal ultrafine particles during nucleation bursts. J Geophys Res 107:8110Google Scholar
  238. Manley SL (1994) The possible involvement of methylcobalamin in the production of methyl iodide. Mar Chem 46:361–369Google Scholar
  239. Manley SL, Dastoor MN (1987) Methyl halide (CH3X) production from the giant-kelp, Macrocystis, and estimates of global CH3X production by kelp. Limnol Oceanogr 32:709–715Google Scholar
  240. Manley SL, Dastoor MN (1988) Methyl iodide production by kelp and associated microbes. Mar Biol 88:447–482Google Scholar
  241. Manley SL, de la Cuesta J (1997) Methyl iodide production from marine phytoplankton cultures. Limnol Oceanogr 42:142–147Google Scholar
  242. Manley SL, Goodwin K, North WJ (1992) Laboratory production of bromoform, methylene bromide, and methyl-iodide by macroalgae and distribution in nearshore Southern California waters. Limnol Oceanogr 37:1652–1659Google Scholar
  243. Mao H, Talbot R, Nielsen C, Sive B (2006) Controls on methanol and acetone in the marine and contintental atmospheres. Geophys Res Lett 33, L02803. doi: 10.1029/2005GL024810CrossRefGoogle Scholar
  244. Marandino CA, de Bruyn WJ, Miller SD, Prather MJ, Saltzman ES (2005) Oceanic uptake and the global atmospheric acetone budget. Geophys Res Lett 32, L15806. doi: 10.1029/2005GL023285CrossRefGoogle Scholar
  245. Marshall RA, Hamilton RTJ, Dring MJ, Harper DB (2000) The red alga Asparagopsis taxiformis/Falkenbergia hillebradiii – a possible source of trichloroethylene and perchloroethylene? Limnol Oceanogr 45:516–519Google Scholar
  246. Martin M, Pohler D, Seitz K, Sinreich R, Platt U (2009) BrO measurements over the eastern North-Atlantic. Atmos Chem Phys 9:9545–9554Google Scholar
  247. Martino M, Liss PS, Plane JMC (2005) The photolysis of dihalomethanes in surface seawater. Env Sci Technol 39:7097–7101. doi: 10.1021/es048718sCrossRefGoogle Scholar
  248. Martino M, Mills GP, Woeltjen J, Liss PS (2009) A new source of volatile organoiodine compounds in surface seawater. Geophys Res Lett 36, L01609. doi: 10.1029/2008GL036334CrossRefGoogle Scholar
  249. Martino M, Lézé B, Baker AR, Liss PS (2012) Chemical controls on ozone deposition to water. Geophys Res Lett 39, L05809. doi: 10.1029/2011GL050282CrossRefGoogle Scholar
  250. McCulloch A, Midgley PM (1996) The production and global distribution of emissions of trichloroethene, tetrachloroethene and dichloromethane over the period 1988–1992. Atmos Environ 30:601–608Google Scholar
  251. McDonald IR, Warner KL, Mcanulla C, Woodall CA, Oremland RS, Murrell JC (2002) A review of bacterial methyl halide degradation: biochemistry, genetics and molecular ecology. Environ Microbiol 4:193–203Google Scholar
  252. McFiggans G, Plane JMC, Allan BJ, Carpenter LJ, Coe H, O’Dowd C (2000) A modeling study of iodine chemistry in the marine boundary layer. J Geophys Res Atmos 105:14371–14385Google Scholar
  253. McFiggans G, Cox RA, Mössinger JC, Allan BJ, Plane JMC (2002) Active chlorine release from marine aerosols: roles for reactive iodine and nitrogen species. J Geophys Res Atmos 107:4271. doi: 10.1029/2001JD000383CrossRefGoogle Scholar
  254. McFiggans G, Coe H, Burgess R, Allan J, Cubison M, Alfarra MR, Saunders R, Saiz-Lopez A, Plane JMC, Wevill DJ, Carpenter LJ, Rickard AR, Monks PS (2004) Direct evidence for coastal iodine particles from Laminaria macroalgae – linkage to emissions of molecular iodine. Atmos Chem Phys 4:701–713Google Scholar
  255. McFiggans G, Artaxo P, Baltensperger U, Coe H, Facchini MC, Feingold G, Fuzzi S, Gysel M, Laaksonen A, Lohmann U, Mentel TF, Murphy DM, O’Dowd CD, Snider JR, Weingartner E (2006) The effect of physical and chemical aerosol properties on warm cloud droplet activation. Atmos Chem Phys 6:2593–2649Google Scholar
  256. McFiggans G, Bale CSE, Ball SM, Beames JM, Bloss WJ, Carpenter LJ, Dorsey J, Dunk R, Flynn MJ, Furneaux KL, Gallagher MW, Heard DE, Hollingsworth AM, Hornsby K, Ingham T, Jones CE, Jones RL, Kramer LJ, Langridge JM, Leblanc C, LeCrane JP, Lee JD, Leigh RJ, Longley I, Mahajan AS, Monks PS, Oetjen H, Orr-Ewing AJ, Plane JMC, Potin P, Shillings AJL, Thomas F, von Glasow R, Wada R, Whalley LK, Whitehead JD (2010) Iodine-mediated coastal particle formation: an overview of the Reactive Halogens in the Marine Boundary Layer (RHaMBLe) Roscoff coastal study. Atmos Chem Phys 10:2975–2999Google Scholar
  257. Meskhidze N, Nenes A (2006) Phytoplankton and cloudiness in the Southern Ocean. Science 314:1419–1423Google Scholar
  258. Mezcua M, Aguera A, Hernando MD, Piedra L, Fernandez-Alba AR (2003) Determination of methyl tert.-butyl ether and ter.-butyl alcohol in seawater samples using purge-and-trap enrichment coupled to gas chromatography with atomic emission and mass spectrometric detection. J Chromatogr A 999:81–90Google Scholar
  259. Millet DB, Jacob DJ, Custer TG, de Gouw JA, Goldstein AH, Karl T, Singh HB, Sive BC, Talbot RW, Warneke C, Williams J (2008) New constraints on terrestrial and oceanic sources of atmospheric methanol. Atmos Chem Phys 8:6887–6905Google Scholar
  260. Millet DB, Guenther A, Siegel DA, Nelson NB, Singh HB, de Gouw JA, Warneke C, Williams J, Eerdekens G, Sinha V, Karl T, Flocke F, Apel E, Riemer DD, Palmer PI, Barkley M (2010) Global atmospheric budget of acetaldehyde: 3-D model analysis and constraints from in-situ and satellite observations. Atmos Chem Phys 10:3405–3425Google Scholar
  261. Moelwyn-Hughes EA (1938) The hydrolysis of the methyl halides. Proc R Soc A164:295–306Google Scholar
  262. Monks PS (2005) Gas-phase radical chemistry in the troposphere. Chem Soc Rev 34:376–395Google Scholar
  263. Moore RM (2001) Trichloroethylene and tetrachloroethylene in Atlantic waters. J Geophys Res 106:135–227Google Scholar
  264. Moore RM (2004) Dichloromethane in North Atlantic waters. J Geophys Res 109, C09004. doi: 10.1029/2004JC002397CrossRefGoogle Scholar
  265. Moore RM (2006) Methyl halide production and loss rates in seawater from field incubation experiments. Mar Chem 101:213–219Google Scholar
  266. Moore RM (2008) A photochemical source of methyl chloride in saline waters. Environ Sci Technol 42(6):1933–1937. doi: 10.1021/es071920lCrossRefGoogle Scholar
  267. Moore RM, Blough NV (2002) A marine source of methyl nitrate. Geophys Res Lett 29:1–4Google Scholar
  268. Moore RM, Tokarczyk R (1993) Volatile biogenic halocarbons in the Northwest Atlantic. Glob Biogeochem Cycle 7:195–210Google Scholar
  269. Moore RM, Zafiriou O (1994) Photochemical production of methyl iodide in seawater. J Geophys Res 99:16415–16420Google Scholar
  270. Moore RM, Groszko W, Niven S (1996a) Ocean–atmosphere exchange ofmethyl chloride: results from N.W. Atlantic and Pacific Ocean studies. J Geophys Res 101:28529–28538Google Scholar
  271. Moore RM, Webb M, Tokarczyk R, Wever R (1996b) Bromoperoxidase and iodoperoxidase enzymes and production of halogenated methanes in marine diatom cultures. J Geophys Res 101:20899–20908Google Scholar
  272. Moore RM, Punshon S, Mahaffey C, Karl D (2009) The relationship between dissolved hydrogen and nitrogen fixation in ocean waters. Deep Sea Res I 56:1449–1458Google Scholar
  273. Mopper K, Stahovec WL (1986) Sources and sinks of low molecular weight organic carbonyl compounds in seawater. Mar Chem 19:305–321Google Scholar
  274. Mopper K, Zhou X, Kieber RJ, Kieber DJ, Sikorski RJ, Jones RD (1991) Photochemical degradation of dissolved organic carbon and its impact on the oceanic carbon cycle. Nature 353:60–62Google Scholar
  275. Moran MA, Zepp RG (1997) Role of photoreactions in the formation of biologically labile compounds from dissolved organic matter. Limnol Oceanogr 42:1307–1316Google Scholar
  276. Moyers JL, Duce RA (1972) Gaseous and particulate iodine in the marine atmosphere. J Geophys Res 77:5229–5238Google Scholar
  277. Mueller J-F, Brasseur G (1999) Sources of upper tropospheric HOx: a three-dimensional study. J Geophys Res 104(D1):1705–1715Google Scholar
  278. Müller C, Iinuma Y, Karstensen J, Van Pinxteren D, Lehmann S, Gnauk T, Herrmann H (2009) Seasonal variation of aliphatic amines in marine sub-micrometer particles at the Cape Verde islands. Atmos Chem Phys 9:9587–9597Google Scholar
  279. Muramatsu Y, Yoshida S (1995) Volatilization of methyl iodide from the soil plant system. Atmos Environ 29:21–25Google Scholar
  280. Murphy CD, Moore RM, White RL (2000) An isotopic labeling method for determining production of volatile organohalogens by marine microalgae. Limnol Oceanogr 45:1868–1871Google Scholar
  281. Nadasdi R, Zuegner GL, Farkas M, Dobe S, Maeda S, Morokuma K (2010) Photochemistry of methyld ethyl ketone: quantum yields and S1/S0-diradical mechanism of photodissociation. Chem Phys Chem 11:3883–3895Google Scholar
  282. Nagao I, Hashimoto S, Suzuki K, Toda S, Narita Y, Tsuda A, Saito H, Kudo I (2009) Responses of DMS in the seawater and atmosphere to iron enrichment in the subarctic western North Pacific (SEEDS-II). Deep Sea Res Part II 56:2899–2917Google Scholar
  283. Naik V, Fiore AM, Horowitz LW, Singh HB, Wiedmeyer C, Guenther A, de Gouw JA, Millet DB, Goldan PD, Kuster WC, Goldstein A (2010) Obsevational constraints on the global atmospheric budget of ethanol. Atmos Chem Phys 10:925–945Google Scholar
  284. Neidleman SL, Geigert J (1986) Biohalogenation: principles basic roles and applications. Ellis Horwood, ChichesterGoogle Scholar
  285. Nemecek-Marshall M, Wojciechowski C, Kuzma J, Silver GM, Fall R (1995) Marine Vibrio species produce the volatile organic compound acetone. Appl Environ Microbiol 61:44–47Google Scholar
  286. Neu JL, Lawler MJ, Prather MJ, Saltzman ES (2008) Oceanic alkyl nitrates as a natural source of tropospheric ozone. Geophys Res Lett 35(L13814)Google Scholar
  287. Nightingale PD, Malin G, Liss PS (1995) Production of chloroform and other low-molecular weight halocarbons by some species of marine algae. Limnol Oceanogr 40:680–689Google Scholar
  288. Nightingale PD, Malin G, Law CS, Watson AJ, Liss PS, Liddicoat MI, Boutin J, Upstill-Goddard RC (2000) In situ evaluation of air-sea gas exchange parameterizations using novel conservative and volatile tracers. Glob Biogeochem Cycle 14:373–387Google Scholar
  289. Novelli PC, Lang PM, Masarie KA, Hurst DM, Myers R, Elkins JW (1999) Molecular hydrogen in the troposphere: global distribution and budget. J Geophys Res 104:30427–30444Google Scholar
  290. Nowak JB, Davis DD, Chen G, Eisele FL, Mauldin RL, Tanner DJ, Cantrell C, Kosciuch E, Bandy A, Thornton D, Clarke A (2001) Airborne observations of DMSO, DMS and OH at marine tropical latitudes. Geophys Res Lett 28:2201–2204Google Scholar
  291. O’Doherty S et al (2001) In situ chloroform measurements at AGAGE atmospheric research stations from 1994–1998. J Geophys Res 106:20429–20444Google Scholar
  292. O’Dowd CD, Geever M, Hill MK, Smith MH, Jennings SG (1998) New particle formation: nucleation rates and spatial scales in the clean marine coastal environment. Geophys Res Lett 25:1661–1664Google Scholar
  293. O’Dowd C, McFiggans G, Creasey DJ, Pirjola L, Hoell C, Smith MH, Allan BJ, Plane JMC, Heard DE, Lee JD, Pilling MJ, Kulmala M (1999) On the photochemical production of new particles in the coastal boundary layer. Geophys Res Lett 26:1707–1710Google Scholar
  294. O’Dowd CD, Hämeri K, Mäkelä JM, Pirjola L, Kulmala M, Jennings SG, Berresheim H, Hansson H-C, de Leeuw G, Kunz GJ, Allen AG, Hewitt CN, Jackson A, Viisanen Y, Hoffmann T (2002a) A dedicated study of New Particle Formation and Fate in the Coastal Environment (PARFORCE): overview of objectives and achievements. J Geophys Res 107:8108. doi: 10.1029/JD000555CrossRefGoogle Scholar
  295. O’Dowd CD, Jimenez JL, Bahreini R, Flagan RC, Seinfeld JH, Hameri K, Pirjola L, Kulmala M, Jennings SG, Hoffmann T (2002b) Marine aerosol formation from biogenic iodine emissions. Nature 417:632–636Google Scholar
  296. O’Dowd CD, Facchini MC, Cavalli F, Ceburnis D, Mircea M, Decesari S, Fuzzi S, Yoon YJ, Putaud J-P (2004) Biogenically driven organic contribution to marine aerosol. Nature 431:676–680Google Scholar
  297. Obernosterer I, Kraay G, de Ranitz E, Herndl GJ (1999) Concentrations of low molecular weight carboxylic acids and carbonyl compounds in the Aegean Sea (Eastern Mediterranean) and the turnover of pyruvate. Aquat Microb Ecol 20:147–156Google Scholar
  298. Oh IB, Byun DW, Kim HC, Kim S, Cameron B (2008) Modeling the effect of iodide distribution on ozone deposition to seawater surface. Atmos Environ 42:4453–4466Google Scholar
  299. Ohsawa N, Tsujita M, Morikawa S, Itoh N (2001) Purification and characterisation of a monohalomethane-producing enzyme S.adenosyl-L-methionine: halide ion methyltransferase from a marine microalga, Pavlova pinguis. Biosci Biotechnol Biochem 65:2397–2404Google Scholar
  300. Olaguer EP (2002) The distribution of the chlorinated solvents dichloromethane, perchloroethylene, and trichloroethylene in the global atmosphere. Environ Sci Pollut Res 9:175–182Google Scholar
  301. Oltmans SJ et al (2006) Long-term changes in tropospheric ozone. Atmos Environ 40:3156–3173Google Scholar
  302. Ooki A, Yokouchi Y (2011) Dichloromethane in the Indian Ocean: evidence for in-situ production in seawater. Mar Chem 124:119–124Google Scholar
  303. Ooki A et al (2010) Methyl halides in surface seawater and marine boundary layer of the northwest Pacific Source. J Geophys Res Ocean 115, C10013. doi: 10.1029/2009JC005703CrossRefGoogle Scholar
  304. Orlikowska A, Schulz-Bull DE (2009) Seasonal variations of volatile organic compounds in the coastal Baltic Sea. Environ Chem 6:495–507Google Scholar
  305. Padmaja S, Huie RE (1993) The reaction of nitric oxide with organic peroxyl radicals. Biochem Bioph Res Co 195:539–544Google Scholar
  306. Palmer CJ, Reason CJ (2009) Relationship of surface bromoform concentrations with mixed layer depth and salinity in the tropical oceans. Glob Biogeochem Cycle 23, doi: 10.1029/2008GB003338Google Scholar
  307. Patroescu IV, Barnes I, Becker KH (1999) FT-IR product study of the OH-initiated oxidation of DMS in the presence of NOx. Atmos Environ 33:25–35Google Scholar
  308. Plane JMC, Vondrak T, Broadley S, Cosic B, Ermoline A, Fontijn A (2006) Kinetic study of the reaction Ca+ + N2O from 188 to 1207 K. J Phys Chem A 110:7874–7881Google Scholar
  309. Plass-Dülmer C, Koppmann R, Ratte M, Rudolph J (1995) Light nonmethane hydrocarbons in seawater. Global Biogeochem Cycle 9:79–100Google Scholar
  310. Prather M et al (2003) Fresh air in the 21st century? Geophys Res Lett 30:1100. doi: 10.1029/2002GL016285CrossRefGoogle Scholar
  311. Prinn RG et al (1999) Long-lived ozone-related compounds in scientific assessment of ozone depletion: 1998. World Meteorological Organization, GenevaGoogle Scholar
  312. Pumphrey HC, Santee MJ, Livesey NJ, Schwartz MJ, Read WG (2011) Microwave Limb Sounder observations of biomass-burning products from the Australian bush fires of February 2009. Atmos Chem Phys 11:6285–6296Google Scholar
  313. Punshon S, Moore RM (2008) Photochemical production of molecular hydrogen in lake water and coastal seawater. Mar Chem 108:215–220Google Scholar
  314. Quack B, Wallace DWR (2003) Air-sea flux of bromoform: controls, rates, and implications. Global Biogeochem Cycle 17:1023. doi: 10.1029/2002GB001890CrossRefGoogle Scholar
  315. Quack B, Atlas E, Petrick G, Stroud V, Schauffler S, Wallace DWR (2004) Oceanic bromoform sources for the tropical atmosphere. Geophys Res Lett 31, L23S05. doi: 10.1029/2004GL020597CrossRefGoogle Scholar
  316. Quack B, Peeken I, Petrick G, Nachtigall K (2007) Oceanic distribution and sources of bromoform and dibromomethane in the Mauritanian upwelling. J Geophys Res Ocean 112, C10006. doi: 10.1029/2006JC003803CrossRefGoogle Scholar
  317. Quinn PK, Bates TS (2011) The case against climate regulation via oceanic phytoplankton sulphur emissions. Nature 480:51–56Google Scholar
  318. Quinn PK, Asher WE, Charlson RJ (1992) Equilibria of the marine multiphase ammonia system. J Atmos Chem 14:11–30. doi: 10.1007/BF00115219CrossRefGoogle Scholar
  319. Raimund S, Quack B, Bozec Y, Vernet M, Rossi V, Garcon V, Morel Y, Morin P (2011) Sources of short-lived bromocarbons in the Iberian upwelling system. Biogeosciences 8:1551–1564Google Scholar
  320. Ratte M, Plass-Dülmer C, Koppmann R, Rudolph J, Denga J (1993) Production mechanism of C2–C4 hydrocarbons in seawater: field measurements and experiments. J Glob Biogeochem Cycle 7:369–378Google Scholar
  321. Ratte M, Plass-Dülmer C, Koppmann R, Rudolph J (1995) Horizontal and vertical profiles of light hydrocarbons in sea water related to biological, chemical and physical profiles. Tellus B 47:607–623Google Scholar
  322. Ratte M, Bujok O, Spitzy A, Rudolph J (1998) Photochemical alkene formation in seawater from dissolved organic carbon: results from laboratory experiments. J Geophys Res 103:5707–5717Google Scholar
  323. Rayman MP (2000) The importance of selenium to human health. Lancet 356:233–241Google Scholar
  324. Razavi A, Karagulian F, Clarisse L, Hurtmans D, Coheur PF, Clerbaux C, Mueller JF, Stavrakou T (2011) Global distributions of methanol and formic acid retrieved for the first time from the IASI/MetOp thermal infrared sounder. Atmos Chem Phys 11:857–872Google Scholar
  325. Read KA, Mahajan AS, Carpenter LJ, Evans MJ, Faria BVE, Heard DE, Hopkins JR, Lee JD, Moller SJ, Lewis AC, Mendes L, McQuaid JB, Oetjen H, Saiz-Lopez A, Pilling MJ, Plane JMC (2008a) Extensive halogen-mediated ozone destruction over the tropical Atlantic Ocean. Nature 453:1232–1235Google Scholar
  326. Read KA, Lewis AC, Bauguitte S, Rankin AM, Salmon RA, Wolff EW, Saiz-Lopez A, Bloss WJ, Heard DE, Lee JD, Plane JMC (2008b) DMS and MSA measurements in the Antarctic boundary layer: impact of BrO on MSA production. Atmos Chem Phys 8:2985–2997Google Scholar
  327. Rhee TS, Brenninkmeijer CAM, Rockmann T (2005) The overwhelming role of soils in the global atmospheric hydrogen cycle. Atmos Chem Phys Discuss 5:11215–11248Google Scholar
  328. Richter U, Wallace DWR (2004) Production of methyl iodide in the tropical Atlantic Ocean. Geophys Res Lett 31, L23S03. doi: 10.1029/2004GL020779CrossRefGoogle Scholar
  329. Riemer DD, Milne P, Zika RG, Pos WH (2000) Photoproduction of nonmethane hydrocarbons (NMHC) in seawater. Mar Chem 71:177–198Google Scholar
  330. Rinsland C, Boone C, Bernath P, Mahieu E, Zander R, Dufour G, Clerbaux C, Turquety S, Chiou L, Mc-Connel J, Neary L, Kaminski JW (2006) First space-based observations of formic acid (HCOOH): atmospheric chemistry experiment austral spring 2004 and 2005 Southern Hemisphere tropical-midlatitude upper tropospheric measurements. Geophys Res Lett 33, L23804. doi: 10.1029/2006GL027128CrossRefGoogle Scholar
  331. Rinsland C, Dufour G, Boone C, Bernath P, Chiou L, Coheur P, Turquety S, Clerbaux C (2007) Satellite boreal measurements over Alaska and Canada during June-July 2004: simulataneous measurements of upper tropospheric CO, C2H6, HCN, CH3Cl, CH4, C2H2, CH3OH, HCOOH, OCS, and SF6 mixing ratios. Glob Biogeochem Cycle 21, GB3008. doi: 10.1029/2006GB002795CrossRefGoogle Scholar
  332. Russo RS, Zhou Y, Haase KB, Wingenter OW, Frinak EK, Mao H, Talbot RW, Sive BC (2010) Temporal variability, sources, and sinks of C1–C5 alkyl nitrates in coastal New England. Atmos Chem Phys 10:1865–1883Google Scholar
  333. Saemundsdottir S, Matrai PA (1998) Biological production of methyl bromide by cultures of marine phytoplankton. Limnol Oceanogr 43:81–87Google Scholar
  334. Saiz-Lopez A, Plane JMC (2004) Novel iodine chemistry in the marine boundary layer. Geophys Res Lett 31, L04112Google Scholar
  335. Saiz-Lopez A, Plane JMC, Shillito JA (2004) Bromine oxide in the mid-latitude marine boundary layer. Geophys Res Lett 31. doi:  10.1029/2003GL018956
  336. Saiz-Lopez A, Plane JMC, McFiggans G, Williams PI, Ball SM, Bitter M, Jones RL, Hongwei C, Hoffmann T (2006a) Modelling molecular iodine emissions in a coastal marine environment: the link to new particle formation. Atmos Chem Phys 6:883–895Google Scholar
  337. Saiz-Lopez A, Shillito JA, Coe H, Plane JMC (2006b) Measurements and modelling of I2, IO, OIO, BrO and NO3 in the mid-latitude marine boundary layer. Atmos Chem Phys 6:1513–1528Google Scholar
  338. Saiz-Lopez A, Chance K, Liu X, Kurosu TP, Sander SP (2007a) First observations of iodine oxide from space. Geophys Res Lett 34, L12812Google Scholar
  339. Saiz-Lopez A, Mahajan AS, Salmon RA, Bauguitte SJ-B, Jones AE, Roscoe HK, Plane JMC (2007b) Boundary layer halogens in coastal Antarctica. Science 317:348–351Google Scholar
  340. Saiz-Lopez A, Plane JMC, Mahajan AS, Anderson PS, Bauguitte SJ-B, Jones AE, Roscoe HK, Salmon RA, Bloss WJ, Lee JD, Heard DE (2008) On the vertical distribution of boundary layer halogens over coastal Antarctica: implications for O3, HOx, NOx and the Hg lifetime. Atmos Chem Phys 8:887–900Google Scholar
  341. Saiz-Lopez A, Plane JMC, Baker AR, Carpenter LJ, Glasow Rv, Martín JCG, McFiggans G, Saunders RW (2012) Atmospheric chemistry of iodine. Chem Rev 112:1773–1804. doi: Scholar
  342. Salawitch RJ (2006) Atmospheric chemistry – biogenic bromine. Nature 439:275–277Google Scholar
  343. Salawitch RJ, Weisenstein DK, Kovalenko LJ, Sioris CE, Wennberg PO, Chance K, Ko MKW, McLinden CA (2005) Sensitivity of ozone to bromine in the lower stratosphere. Geophys Res Lett 32, L05811. doi: 10.1029/2004GL021504CrossRefGoogle Scholar
  344. Saltzman ES, Aydin M, Tatum C, Williams MB (2008) 2,000-year record of atmospheric methyl bromide from a South Pole ice core. J Geophys Res Atmos 113, D05304. doi: 10.1029/2007JD008919CrossRefGoogle Scholar
  345. Sander R, von Glasow R, Crutzen PJ (2004) Comment on: Laskin, et al. Reactions at interfaces as a source of sulfate formation in sea-salt particles. Science 303:628cGoogle Scholar
  346. Saunders RW, Plane JMC (2005) Formation pathways and composition of iodine oxide ultra-fine particles. Environ Chem 2:299–303Google Scholar
  347. Saunders RW, Plane JMC (2006) Fractal growth modelling of I2O5 nanoparticles. J Aerosol Sci 37:1737Google Scholar
  348. Saunders RW, Mahajan AS, Gómez Martín JC, Kumar R, Plane JMC (2010) Studies of the formation and growth of aerosol from molecular iodine precursor. Z Phys Chem (Munich) 224:1095–1117Google Scholar
  349. Savoie DL, Prospero JM, Larsen RJ, Huang F, Izaguirre MA, Huang T, Snowdon TH, Custals L, Sanderson CG (1993) Nitrogen and sulfur species in Antarctic aerosols at Mawson, Palmer Station, and Marsh (King George Island). J Atmos Chem 17:95. doi: 10.1007/BF00702821CrossRefGoogle Scholar
  350. Scarratt MG, Moore RM (1996) Production of methyl bromide and chloride in laboratory cultures of marine phytoplankton. Mar Chem 54:263–272Google Scholar
  351. Scarratt MG, Moore RM (1998) Production of methyl bromide and chloride in laboratory cultures of marine phytoplankton II. Mar Chem 59:311–320Google Scholar
  352. Scarratt MG, Moore RM (1999) Production of chlorinated hydrocarbons by the red microalga, Porphyridium purpureum. Limnol Oceanogr 44:703–707Google Scholar
  353. Schade GW, Goldstein AH (2006) Seasonal measurements of acetone and methanol: abundances and implications for atmospheric budgets. Global Biogeochem Cycle 20, GB1011. doi: 10.1029/2005GB002566CrossRefGoogle Scholar
  354. Schauffler SM, Atlas EL, Flocke F, Lueb RA, Stroud V, Travnicek W (1998) Measurements of bromine containing organic compounds at the tropical tropopause. Geophys Res Lett 25:317–320Google Scholar
  355. Schlesinger WH, Hartley AE (1992) A global budget for atmospheric NH3. Biogeochemistry 15:191–211. doi: 10.1007/BF00002936CrossRefGoogle Scholar
  356. Schmidt U (1974) Molecular hydrogen in the atmosphere. Tellus 26:78–90Google Scholar
  357. Schmittner A (2005) Decline of the marine ecosystem caused by a reduction in the Atlantic overturning circulation. Nature 434:628–633Google Scholar
  358. Schönhardt A, Richter A, Wittrock F, Kirk H, Oetjen H, Roscoe HK, Burrows JP (2008) Observations of iodine monoxide columns from satellite. Atmos Chem Phys 8:637–653Google Scholar
  359. Sciare J, Baboukas E, Hancy R, Mihalopoulos N, Nguyen BC (1998) Seasonal variation of dimethylsulfoxide in rainwater at Amsterdam Island in the Southern Indian Ocean; Implications on the biogenic sulfur cycle. J Atmos Chem 30:229–240Google Scholar
  360. Sciare J, Baboukas E, Kanakidou M, Krischke U, Belviso S, Bardouki H, Mihalopoulos N (2000a) Spatial and temporal variability of atmospheric sulfur-containing gases and particles during the Albatross campaign. J Geophys Res 105:14433–14448Google Scholar
  361. Sciare J, Kanakidou M, Mihalopoulos N (2000b) Diurnal and seasonal variation of atmospheric dimethylsulfoxide at Amsterdam Island in the southern Indian Ocean. J Geophys Res 105:17257–17265Google Scholar
  362. Sciare J, Baboukas E, Mihalopoulos N (2001) Short-term variability of atmospheric DMS and its oxidation products at Amsterdam Island during summer time. J Atmos Chem 39:281–302Google Scholar
  363. Seto FYB, Duce RA (1972) A laboratory study of iodine enrichment on atmospheric sea-salt particles produced by bubbles. J Geophys Res 77:5339–5349Google Scholar
  364. Shaw SL, Chisholm SW, Prinn RG (2003) Isoprene production by Prochlorococcus, a marine cyanobacterium, and other phytoplankton. Mar Chem 80:227–245Google Scholar
  365. Shaw SL, Gantt B, Meskhidze N (2010) Production and emissions of marine isoprene and monoterpenes: a review. Adv Meteor 2010:4048696. doi: 10.1155/2010/408696CrossRefGoogle Scholar
  366. Shim C, Wang Y, Singh HB, Blake DR, Guenther AB (2007) Source characteristics of oxygenated volatile organic compounds and hydrogen cyanide. J Geophys Res 112, D10305. doi: 10.1029/2006JD007543CrossRefGoogle Scholar
  367. Sievering H, Lerner B, Slavich J, Anderson J, Posfai M, Cainey J (1999) O3 oxidation of SO2 in sea-salt aerosol water: size distribution of non-sea-salt sulfate during the first aerosol characterization experiment (ACE 1). J Geophys Res 104:21707–21717Google Scholar
  368. Sievering H, Cainey J, Harvey M, McGregor J, Nichol S, Quinn P (2004) Aerosol non-sea-salt sulfate in the remote marine boundary layer under clear-sky and normal cloudiness conditions: ocean-derived biogenic alkalinity enhances sea-salt sulfate production by ozone oxidation. J Geophys Res 109, D19317. doi: 10.1029/2003JD004315CrossRefGoogle Scholar
  369. Simmonds PG et al (2006) Global trends, seasonal cycles, and European emissions of dichloromethane, trichloroethene, and tetrachloroethene from the AGAGE observations at Mace Head, Ireland, and Cape Grim, Tasmania. J Geophys Res 111, D18304. doi: 10.1029/2006JD007082CrossRefGoogle Scholar
  370. Simo R, Pedros-Alio C (1999) Role of vertical mixing in controlling the oceanic production of dimethyl sulphide. Nature 402:396–399Google Scholar
  371. Singh HB, Ohara D, Herlth D, Sachse W, Blake DR, Bradshaw JD, Kanakidou M, Critzen PJ (1994) Acetone in the atmosphere: distribution, sources, and sinks. J Geophys Res 99:1805–1819Google Scholar
  372. Singh HB, Kanakidou M, Crutzen PJ, Jacob DJ (1995) High concentrations and photochemical fate of oxygenated hydrocarbons in the global troposphere. Nature 378:50–54Google Scholar
  373. Singh H, Chen Y, Staudt A, Jacob D, Blake D, Heikes B, Snow J (2001) Evidence from the Pacific troposphere for large global sources of oxygenated organic compounds. Nature 410:1078–1081Google Scholar
  374. Singh HB et al (2003a) In situ measurements of HCN and CH3CN over the Pacific Ocean: sources, sinks and budgets. J Geophys Res 108:8795. doi: 10.1029/2002JD003006CrossRefGoogle Scholar
  375. Singh HB, Tabazadeh A, Evans MJ, Field BD, Jacob DJ, Sachse G, Crawford JH, Sette R, Brune WH (2003b) Oxygenated volatile organic chemicals in the oceans: inferences and implications based on atmospheric observations and air-sea exchange models. Geophys Res Lett 30:1862–1866Google Scholar
  376. Singh HB et al (2004) Analysis of the atmospheric distribution, sources, and sinks of oxygenated volatile organic chemicals based on measurements over the Pacific during TRACE-P. J Geophys Res 109, D15D07. doi: 10.1029/2003JD003883CrossRefGoogle Scholar
  377. Singh HB et al (2010) Pollution influences on atmospheric composition and chemistry at high northern latitudes: Boreal and California forest fire emissions. Atmos Environ 44:4553–4564Google Scholar
  378. Sinha V, Williams J, Meyerhoefer M, Riebesell U, Paulino AI, Larsen A (2007) Air-sea fluxes of methanol, acetone, acetaldehyde, isoprene, and DMS from a Norwegian fjord following a phytoplankton bloom in a mesocosm experiment. Atmos Chem Phys 7:739–755Google Scholar
  379. Sluis MK, Ensign SA (1997) Purification and characterization of acetone carboxylase from Xanthobacter strain Py2. Proc Natl Acad Sci USA 94:8456–8461Google Scholar
  380. Smith MH (2007) Sea-salt particles and the CLAW hypothesis. Environ Chem 4:391–395Google Scholar
  381. Smythe-Wright D, Boswell M, Breithaupt P, Davidson RD, Dimmer CH, Eiras-Diaz LB (2006) Methyl iodide production in the ocean: implications for climate change. Glob Biogeochem Cycle 20, GB3003. doi: 10.1029/2005GB002642CrossRefGoogle Scholar
  382. Smythe-Wright D, Peckett C, Boswell S, Harrison R (2010) Controls on the production of organohalogens by phytoplankton: effect of nitrate concentration and grazing. J Geophys Res 115, G03020. doi: 10.1029/2009JG001036CrossRefGoogle Scholar
  383. Spivakovsky CM, Yevich R, Logan JA, Wofsy SC, McElroy MB (1990) Tropospheric OH in a three-dimensional chemical tracer model: an assessment based on observations of CH3CCl3. J Geophys Res 95:18441–18471Google Scholar
  384. Sprung D, Zahn A (2010) Acetone in the upper troposphere/lowermost stratosphere measured by the CARIBIC passenger aircraft: distribution, seasonal cycle, and variability. J Geophys Res 115, D16301. doi: 10.1029/2009JD012099CrossRefGoogle Scholar
  385. Stefels J (2000) Physiological aspects of the production and conversion of DMSP in marine algae and higher plants. J Sea Res 43:183–197Google Scholar
  386. Stefels J, Steinke M, Turner S, Malin G, Belviso S (2007) Environmental constraints on the production and removal of the climatically active gas dimethylsulphide (DMS) and implications for ecosystem modeling. Biogeochemistry 83:245–275Google Scholar
  387. Stevens B, Feingold G (2009) Untangling aerosol effects on clouds and precipitation in a buffered system. Nature 461:607–613Google Scholar
  388. Stubbins A, Uher G, Law CS, Mopper K, Robinson C, Upstill-Goddard RC (2006a) Open-ocean carbon monoxide photoproduction. Deep Sea Res II 53:1695–1705Google Scholar
  389. Stubbins A, Uhera G, Kitidis V, Law CS, Upstill-Goddard RC, Woodward EMS (2006b) The open-ocean source of atmospheric carbon monoxide. Deep Sea Res II 53:1685–1694Google Scholar
  390. Stubbins A, Hubbard V, Uher G, Law CS, Upstill-Goddard RC, Aiken GR, Mopper K (2008) Relating carbon monoxide photoproduction to dissolved organic matter functionality. Environ Sci Technol 42:3271–3276Google Scholar
  391. Sturrock GA, Reeves CE, Mills GP, Penkett SA, Parr CR, McMinn A, Corno G, Tindale NW, Fraser PJ (2003) Saturation levels of methyl bromide in the coastal waters off Tasmania. Global Biogeochem Cycle 17:1107. doi: 10.1029/2002GB002024CrossRefGoogle Scholar
  392. Stutz J, Pikelnaya O, Hurlock SC, Trick S, Pechtl S, von Glasow R (2007) Daytime OIO in the Gulf of Maine. Geophys Res Lett 34, L22816Google Scholar
  393. Sunda W, Kieber DJ, Kiene RP, Huntsman S (2002) An antioxidant function for DMSP and DMS in marine algae. Nature 418:317–320Google Scholar
  394. Sutton MA, Erisman JW, Dentener F, Möller D (2008) Ammonia in the environment: from ancient times to the present. Environ Poll 156:583–604. doi: 10.1016/j.envpol.2008.03.013CrossRefGoogle Scholar
  395. Swanson AL, Davis DD, Arimooto R, Robert P, Atlas EL, Flocke F, Meinardi S, Rowland FS, Blake DR (2004) Organic trace gases of oceanic origin observed at South Pole during ISCAT 2000. Atmos Environ 38:5462–5472Google Scholar
  396. Swinnerton J, Linnenbom V, Lamontagne R (1970) Ocean: a natural source of carbon monoxide. Science 167:984–986Google Scholar
  397. Tanhua T, Fogelqvist E, Basturk O (1996) Reduction of volatile halocarbons in anoxic seawater, results from a study in the Black Sea. Mar Chem 54:159–170Google Scholar
  398. Theiler R, Cook JC, Hager LP (1978) Halohydrocarbon synthesis by bromoperoxidase. Science 202:1094–1096Google Scholar
  399. Thornton JA, Kercher JP, Riedel TP, Wagner NL, Cozic J, Holloway JS, Dube WP, Wolfe GM, Quinn PK, Middlebrook AM, Alexander B, Brown SS (2010) A large atomic chlorine source inferred from mid-continental reactive nitrogen chemistry. Nature 464:271–274Google Scholar
  400. Tiefenau HK (1973) The specific ozone destruction rate of the ocean surface and its dependence on horizontal wind velocity. Pure Appl Geophys 106–108:1116–1123Google Scholar
  401. Tokarczyk R, Moore RM (1994) Production of volatile organohalogens by phytoplankton cultures. Geophys Res Lett 21:285–288Google Scholar
  402. Tokarczyk R, Goodwin KD, Saltzman ES (2003a) Methyl chloride and methyl bromide degradation in the Southern Ocean. Geophys Res Lett 30:1808. doi: 10.1029/2003GL017459CrossRefGoogle Scholar
  403. Tokarczyk R, Saltzman ES, Moore RM, Yvon-Lewis SA (2003b) Biological degradation of methyl chloride in coastal seawater. Global Biogeochem Cycle 17:1057. doi: 10.1029/2002GB001949CrossRefGoogle Scholar
  404. Toumi R (1994) BrO as a sink for dimethylsulphide in the marine atmosphere. Geophys Res Lett 21:117–120Google Scholar
  405. Troxler RF, Dokos JM (1973) Formation of carbon-monoxide and bile pigment in red and blue-green-algae. Plant Phys 51:72–75Google Scholar
  406. Trudinger CM, Etheridge DM, Sturrock GA, Fraser PJ, Krummel PB, McCulloch A (2004) Atmospheric histories of halocarbons from analysis of Antarctic firn air: methyl bromide, methyl chloride, chloroform, and dichloromethane. J Geophys Res 109, D22310. doi: 10.1029/2004JD004932CrossRefGoogle Scholar
  407. Truesdale VW, Luther GW III (1995) Molecular iodine reduction by natural and model organic substances in seawater. Aquat Geochem 1:89–104Google Scholar
  408. Tsukada H, Hara H, Iwashima K, Yamagata N (1987) The iodine content of atmospheric aerosols as determined by the use of a Fluoropore filter for collection. Bull Chem Soc Japan 60:3195–3198Google Scholar
  409. Turner SM, Nightingale PD, Spokes LJ, Liddicoat MI, Liss PS (1996) Increased dimethyl sulphide concentrations in sea water from in situ iron enrichment. Nature 383:513–517Google Scholar
  410. Turner SM, Harvey MJ, Law CS, Nightingale PD, Liss PS (2004) Iron-induced changes in oceanic sulfur biogeochemistry. Geophys Res Lett 31:doi: 10.1029/2004GL020296
  411. Uher G, Andreae MO (1997) Photochemical production of carbonyl sulfide in North Sea water: a process study. Limnol Oceanogr 42:432–442Google Scholar
  412. Valentine RL, Zepp RG (1993) Formation of carbon-monoxide from the photodegradation of terrestrial dissolved organic-carbon in natural-waters. Environ Sci Technol 27:409–412Google Scholar
  413. Vallina SM, Simo R (2007) Strong relationship between DMS and the solar radiation dose over the global surface ocean. Science 315:506–508Google Scholar
  414. Vallina SM, Simo R, Manizza M (2007) Weak response of oceanic dimethylsulfide to upper mixing shoaling induced by global warming. Proc Natl Acad Sci USA 104:16004–16009Google Scholar
  415. Vallina SM, Simo R, Anderson TR, Gabric A, Cropp R, Pacheco JM (2008) A dynamic model of oceanic sulfur (DMOS) applied to the Sargasso Sea: Simulating the dimethylsulfide (DMS) summer paradox. J Geophys Res-Biogeosciences 113 (G1). doi: 10.1029/2007JG000415Google Scholar
  416. Vardi A, Formiggini F, Casotti R, De Martino A, Ribalet F, Miralto A, Bowler C (2006) A stress surveillance system based on calcium and nitric oxide in marine diatoms. PLoS Biol 4:411–419Google Scholar
  417. Vogel TM, Criddle CS, McCarty PL (1987) Transformations of halogenated aliphatic-compounds. Environ Sci Tech 21:722–736Google Scholar
  418. Vogt M, Liss PS (2009) Dimethylsulfide and climate. In: Le Quéré C, Saltzman ES (eds) Surface ocean-lower atmosphere processes. American Geophysical Union, Washington, DC, pp 197–232Google Scholar
  419. Vogt R, Sander R, Glasow RV, Crutzen PJ (1999) Iodine chemistry and its role in halogen activation and ozone loss in the marine boundary layer: a model study. J Atmos Chem 32:375–395Google Scholar
  420. Vogt M, Vallina S, von Glasow S (2008) New directions: Correspondence on “Enhancing the natural cycle to slow global warming”. Atmos Environ 42:4803–4805Google Scholar
  421. von Glasow R (2006) Importance of the surface reaction OH + Cl- on sea salt aerosol for the chemistry of the marine boundary layer – a model study. Atmos Chem Phys 6:3571–3581Google Scholar
  422. von Glasow R (2007) A look at the CLAW hypothesis from an atmospheric chemistry point of view. Environ Chem 4:379–381., Scholar
  423. Von Glasow R (2008) Sun, sea and ozone destruction. Nature 453:1195–1196Google Scholar
  424. von Glasow R, Crutzen PJ (2004) Model study of multiphase DMS oxidation with a focus on halogens. Atmos Chem Phys 4:589–608Google Scholar
  425. von Glasow R, Crutzen PJ (2007) Tropospheric halogen chemistry. In: Heinrich DH, Karl KT (eds) Treatise on geochemistry. Pergamon, OxfordGoogle Scholar
  426. von Glasow R, Sander R, Bott A, Crutzen PJ (2002) Modeling halogen chemistry in the marine boundary layer. 1. Cloud-free MBL. J Geophys Res 107:4341Google Scholar
  427. von Glasow R, von Kuhlmann R, Lawrence MG, Platt U, Crutzen PJ (2004) Impact of reactive bromine chemistry in the troposphere. Atmos Chem Phys 4:2481–2497Google Scholar
  428. von Gunten U (2003) Ozonation of drinking water: Part I. Oxidation kinetics and product formation. Water Res 37:1443–1467Google Scholar
  429. Wada R, Beames J, Orr-Ewing A (2007) Measurement of IO radical concentrations in the marine boundary layer using a cavity ring-down spectrometer. J Atmos Chem 58:69–87Google Scholar
  430. Wade LG (1999) Organic chemistry, 4th edn. Prentice-Hall, Upper Saddle RiverGoogle Scholar
  431. Wang L, Lal V, Khalizov AF, Zhang R (2010) Heterogeneous chemistry of alkylamines with sulfuric acid: implications for atmospheric formation of alkylaminium sulfates. Environ Sci Tech 44:2461–2465. doi: 10.1021/es9036868CrossRefGoogle Scholar
  432. Ward BB (2003) Significance of anaerobic ammonium oxidation in the ocean. Trends Microbiol 11:408–410. doi: 10.1016/S0966-842X(03)00181-1CrossRefGoogle Scholar
  433. Warneck P, Williams J (2011) The atmospheric chemist’s companion, 1st edn. Springer, Dordrecht. ISBN 10: 9400722745Google Scholar
  434. Watts SF (2000) The mass budgets of carbonyl sulfide, dimethyl sulfide, carbon disulfide and hydrogen sulfide. Atmos Environ 34:761–779Google Scholar
  435. Weeks SJ, Currie B, Bakun A (2002) Massive emissions of toxic gas in the Atlantic. Nature 415:493–494Google Scholar
  436. Wennberg PO et al (1998) Hydrogen radicals, nitrogen radicals, and the production of O3 in the upper troposphere. Science 279:49–53Google Scholar
  437. Wesely ML, Hicks BB (2000) A review of the current status of knowledge on dry deposition. Atmos Environ 34:2261–2282Google Scholar
  438. Whalley L, Furneaux K, Gravestock T, Atkinson H, Bale C, Ingham T, Bloss W, Heard D (2007) Detection of iodine monoxide radicals in the marine boundary layer using laser induced fluorescence spectroscopy. J Atmos Chem 58:19–39Google Scholar
  439. Williams J, Holzinger R, Gros V, Xu X, Atlas E, Wallace DWR (2004) Measurements of organic species in air and seawater from the tropical Atlantic. Geophys Res Lett 31, L23S06. doi: 10.1029/2004GL020012CrossRefGoogle Scholar
  440. Williams J, Custer T, Riede H, Sander R, Jöckel P, Hoor P, Pozzer A, Wong-Zehnpfennig S, Hosaynali-Beygi Z, Fischer H, Gros V, Colomb A, Bonsang B, Yassaa N, Peeken I, Atlöas EL, Waluda CM, van Aardenne JA, Lelieveld J (2010) Assessing the effect of marine isoprene and ship emissions on ozone, using modeling and measurements from the South Atlantic Ocean. Environ Chem 7:171–182. doi: 10.1071/EN09154CrossRefGoogle Scholar
  441. Williamson P, Wallace DWR, Law CS, Boyd BW, Collos Y, Croot P, Denman K, Riebesell U, Takeda S, Vivian C (2012) Ocean fertilization for geoengineering: a review of effectiveness, environmental impacts and emerging governance. Process Saf Environ Prot. doi: 10.1016/j.psep.2012.10.007CrossRefGoogle Scholar
  442. Wilson DF, Swinnerton J, Lamontagne R (1970) Production of carbon monoxide and gasesous hydrocarbons in seawater – relation to dissolved organic carbon. Science 168:1576–1577Google Scholar
  443. Wilson ST, Foster RA, Zehr JP, Karl DM (2010) Hydrogen productioin b Trichodesmium erhthraeum Cyanothece sp. and Crocosphaera watsonii. Aquat Microb Ecol 59:197–206Google Scholar
  444. Wingenter OW, Haase KB, Strutton P, Friederich G, Meinardi S, Blake DR, Rowland FS (2004) Changing concentrations of CO, CH4, C5H8, CH3Br, CH3I and dimethyl sulfide during the southern ocean iron enrichment experiments. Proc Natl Acad Sci USA 101:8537–8541Google Scholar
  445. Wingenter OW, Sive BC, Blake NJ, Blake DR, Rowland FS (2005) Atomic chlorine concentrations derived from ethane and hydroxyl measurements over the Equatorial Pacific Ocean: implication for dimethyl sulfide and bromine monoxide. J Geophys Res 110, D20308. doi: 10.1029/2005JD005875CrossRefGoogle Scholar
  446. Wingenter OW, Elliot SM, Blake DR (2007) New directions: enhancing the natural sulfur cycle to slow global warming. Atmos Environ 41:7373–7375Google Scholar
  447. WMO (2011) Scientific assessment of ozone depletion: 2010, Global ozone research and monitoring project-report no. 52 Rep. World Meteorological Organization, GenevaGoogle Scholar
  448. Woodhouse MT, Mann GW, Carslaw KS, Boucher O (2008) New directions: the impact of oceanic iron fertilization on cloud condensation nuclei. Atmos Environ 42:5728–5730Google Scholar
  449. Woodhouse MT, Carslaw KS, Mann GW, Vallina SM, Vogt M, Halloran PR, Boucher O (2010) Low sensitivity of cloud condensation nuclei to changes in the sea-air flux of dimethyl-sulphide. Atmos Chem Phys 10:7545–7559Google Scholar
  450. Wuosma AM, Hager PL (1990) Methylchloride transerfrase. A carbocation route for biosynthesis of halometabolites. Science 249:160–162Google Scholar
  451. Xiao X et al (2010) Optimal estimation of the surface fluxes of methyl chloride using a 3-D global chemical transport model. Atmos Chem Phys 10:5515–5533Google Scholar
  452. Xie HX, Moore RM, Miller WL (1998) Photochemical production of carbon disulphide in seawater. J Geophys Res 103:5635–5644Google Scholar
  453. Xie HX, Moore RM (1999) Carbon disulfide in the North Atlantic and Pacific Ocean. J Geophys Res 104:5393–5402Google Scholar
  454. Xie HX, Zafiriou OC, Umile TP, Kieber DJ (2005) Biological consumption of carbon monoxide in Delaware Bay, NW Atlantic and Beaufort Sea. Mar Ecol Prog Ser 290:1–14Google Scholar
  455. Xie HX, Belanger S, Demers S, Vincent WF, Papakyriakou TN (2009) Photobiogeochemical cycling of carbon monoxide in the southeastern Beaufort Sea in spring and autumn. Limnol Oceanogr 54:234–249Google Scholar
  456. Xu S, Xie Z-Q, Li B, Sun L, Kang H, Yang H, Zhang P (2010) Iodine speciation in marine aerosols along a 15000-km round-trip cruise path from Shanghai, China, to the Arctic Ocean. Environ Chem 7:406–412Google Scholar
  457. Yang M, Huebert BJ, Blomquist BW, Howell SG, Shank LM, McNaughton CS, Clarke AD, Hawkins LN, Russell LM, Covert DS, Coffman DJ, Bates TS, Quinn PK, Zagorac N, Bandy AR, de Szoeke SP, Zuidema PD, Tucker SC, Brewer WA, Yang X, Cox RA, Warwick NJ, Pyle JA, Carver GD, O’Connor FM, Savage NH (2005) Tropospheric bromine chemistry and its impacts on ozone: a model study. J Geophys Res Atmos 110, D23311. doi: 10.1029/2005JD006244CrossRefGoogle Scholar
  458. Yang GP, Wang WL, Lu XL, Ren CY (2010) Distribution, flux and biological consumption of carbon monoxide in the Southern Yellow Sea and the East China Sea. Mar Chem 122:74–82Google Scholar
  459. Yang GP, Ren CY, Lu XL, Liu CY, Ding HB (2011) Distribution, flux, and photoproduction of carbon monoxide in the East China Sea and Yellow Sea in spring. J Geophys Res Ocean 116, CO2001. doi: 10.1029/2010JC006300CrossRefGoogle Scholar
  460. Yassaa N, Peeken I, Zöllner E, Bluhm K, Arnold S, Spracklen D, Williams J (2008) Evidence for marine production of monoterpenes. Environ Chem 5:391–401. doi: 10.1071/EN08047CrossRefGoogle Scholar
  461. Yu F (2006) Effect of ammonia on new particle formation: a kinetic H2SO4-H2O-NH3 nucleation model constrained by laboratory measurements. J Geophys Res D111, D01204. doi: 10.1029/2005JD005968CrossRefGoogle Scholar
  462. Yvon-Lewis SA, Butler JH, Saltzman EH, Matrai PA, King DB, Tokarczyk R, Moore RM, Zhang JZ (2002) Methyl bromide cycling in a warm-core eddy of the North Atlantic Ocean. Glob Biogeochem Cycle 16:1141. doi: 10.1029/2002GB001898CrossRefGoogle Scholar
  463. Yvon-Lewis SA, Saltzman ES, Montzka SA (2009) Recent trends in atmospheric methyl bromide: analysis of post-montreal protocol variability. Atmos Chem Phys 9:5963–5974Google Scholar
  464. Zafiriou OC (1975) Reaction of methyl halides with seawater and marine aerosols. J Mar Res 33:75–81Google Scholar
  465. Zafiriou OC, MacFarland M (1981) Nitric oxide formation from nitrite photolysis in the central equatorial Pacific. J Geophys Res 86:3173–3182Google Scholar
  466. Zafiriou OC, McFarland M, Bromund RH (1980) Nitric oxide in seawater. Science 207:637–639Google Scholar
  467. Zafiriou OC, Andrews SS, Wang W (2003) Concordant estimates of oceanic carbon monoxide source and sink processes in the Pacific yield a balanced global “blue-water” CO budget. Glob Biogeochem Cycle 17. doi: 10.1029/2001GB001638
  468. Zhang Z, Liu C, Wu Z, Xing L, Li P (2006) Detection of nitric oxide in culture media and studies on nitric oxide formation by marine microalgae. Med Sci Monit 12:BR75–BR85Google Scholar
  469. Zhou X, Mopper K (1997) Photochemical production of low-molecular-weight carbonyl compounds in seawater and surface microlayer and their air-sea exchange. Mar Chem 56:201–213Google Scholar
  470. Zika RG, Gidel LT, Davis DD (1984) A comparison of photolysis and substitution decomposition rates of methyl iodide in the ocean. Geophys Res Lett 11:353–356Google Scholar
  471. Ziolkowski L, Miller W (2007) Variability of the apparent quantum efficiency of CO photoproduction in the Gulf of Maine and Northwest Atlantic. Mar Chem 105:258–270Google Scholar
  472. Zuo Y, Jones RD (1995) Formation of carbon monoxide by photolysis of dissolved marine organic material and its significance in the carbon cycling of the oceans. Naturwissenschaften 82:472–474Google Scholar

Copyright information

© The Author(s) 2014

Open Access This chapter is distributed under the terms of the Creative Commons Attribution Noncommercial License, which permits any noncommercial use, distribution, and reproduction in any medium, provided the original author(s) and source are credited.

Authors and Affiliations

  • Peter S. Liss
    • 1
    • 2
  • Christa A. Marandino
    • 3
  • Elizabeth E. Dahl
    • 4
  • Detlev Helmig
    • 5
  • Eric J. Hintsa
    • 6
  • Claire Hughes
    • 7
  • Martin T. Johnson
    • 1
    • 8
  • Robert M. Moore
    • 9
  • John M. C. Plane
    • 10
  • Birgit Quack
    • 3
  • Hanwant B. Singh
    • 11
  • Jacqueline Stefels
    • 12
  • Roland von Glasow
    • 1
  • Jonathan Williams
    • 13
  1. 1.Centre for Ocean and Atmospheric Sciences, School of Environmental SciencesUniversity of East AngliaNorwichUK
  2. 2.Department of OceanographyTexas A & M UniversityCollege StationUSA
  3. 3.GEOMAR Helmholtz Centre for Ocean Research KielKielGermany
  4. 4.Loyola University MarylandBaltimoreUSA
  5. 5.Institute of Arctic and Alpine ResearchBoulderUSA
  6. 6.University of Colorado and NOAA Global Monitoring DivisionBoulderUSA
  7. 7.Environment DepartmentUniversity of YorkYorkUK
  8. 8.Centre for environment, fisheries and aquaculture scienceLowestoftUK
  9. 9.Department of OceanographyDalhousie UniversityHalifaxCanada
  10. 10.University of LeedsLeedsUK
  11. 11.NASA Ames Research CentreMountain ViewUSA
  12. 12.Centre for Life Sciences, Ecophysiology of PlantsUniversity of GroningenGroningenThe Netherlands
  13. 13.Department of Atmospheric ChemistryMax Planck Institute for ChemistryMainzGermany

Personalised recommendations