Advertisement

Constraint-Based Runtime Prediction of SLA Violations in Service Orchestrations

  • Dragan Ivanović
  • Manuel Carro
  • Manuel Hermenegildo
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7084)

Abstract

Service compositions put together loosely-coupled component services to perform more complex, higher level, or cross-organizational tasks in a platform-independent manner. Quality-of-Service (QoS) properties, such as execution time, availability, or cost, are critical for their usability, and permissible boundaries for their values are defined in Service Level Agreements (SLAs). We propose a method whereby constraints that model SLA conformance and violation are derived at any given point of the execution of a service composition. These constraints are generated using the structure of the composition and properties of the component services, which can be either known or empirically measured. Violation of these constraints means that the corresponding scenario is unfeasible, while satisfaction gives values for the constrained variables (start / end times for activities, or number of loop iterations) which make the scenario possible. These results can be used to perform optimized service matching or trigger preventive adaptation or healing.

Keywords

Service Orchestrations Quality of Service Service Level Agreements Monitoring Prediction Constraints 

References

  1. 1.
    Apt, K.R.: Principles of Constraint Programming. Cambridge University Press (2003)Google Scholar
  2. 2.
    Apt, K.R., Wallace, M.G.: Constraint Logic Programming Using ECLIPSE. Cambridge University Press (2007)Google Scholar
  3. 3.
    Cardoso, J.: About the Data-Flow Complexity of Web Processes. In: 6th International Workshop on Business Process Modeling, Development, and Support: Business Processes and Support Systems: Design for Flexibility, pp. 67–74 (2005)Google Scholar
  4. 4.
    Cardoso, J., Sheth, A., Miller, J., Arnold, J., Kochut, K.: Quality of service for workflows and web service processes. Web Semantics: Science, Services and Agents on the World Wide Web 1(3), 281–308 (2004)CrossRefGoogle Scholar
  5. 5.
    Cisco Systems. ECLIPSE User Manual (2006)Google Scholar
  6. 6.
    Dechter, R.: Constraint Processing. Morgan Kauffman Publishers (2003)Google Scholar
  7. 7.
    Di Nitto, E., Ghezzi, C., Metzger, A., Papazoglou, M., Pohl, K.: A journey to highly dynamic, self-adaptive service-based applications. Automated Software Engineering 15, 313–341 (2008), doi:10.1007/s10515-008-0032-xCrossRefGoogle Scholar
  8. 8.
    Dranidis, D., Metzger, A., Kourtesis, D.: Enabling Proactive Adaptation through Just-in-Time Testing of Conversational Services. In: Di Nitto, E., Yahyapour, R. (eds.) ServiceWave 2010. LNCS, vol. 6481, pp. 63–75. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  9. 9.
    Hermenegildo, M.V., Bueno, F., Carro, M., López, P., Mera, E., Morales, J.F., Puebla, G.: An Overview of Ciao and its Design Philosophy. Theory and Practice of Logic Programming (2012), http://arxiv.org/abs/1102.5497
  10. 10.
    Hielscher, J., Kazhamiakin, R., Metzger, A., Pistore, M.: A framework for Proactive Self-Adaptation of Service-Based Applications Based on Online Testing. In: Mähönen, P., Pohl, K., Priol, T. (eds.) ServiceWave 2008. LNCS, vol. 5377, pp. 122–133. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  11. 11.
    iMatix Corporation. 0MQ - The Reference Manual, version 2.1 (June 2011)Google Scholar
  12. 12.
    Ivanović, D., Carro, M., Hermenegildo, M.: An Initial Proposal for Data-Aware Resource Analysis of Orchestrations with Applications to Predictive Monitoring. In: Dan, A., Gittler, F., Toumani, F. (eds.) ICSOC/ServiceWave 2009. LNCS, vol. 6275, pp. 414–424. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  13. 13.
    Ivanović, D., Carro, M., Hermenegildo, M.: Towards Data-Aware QoS-Driven Adaptation for Service Orchestrations. In: Proceedings of the 2010 IEEE International Conference on Web Services (ICWS 2010), Miami, FL, USA, July 5-10. IEEE (2010)Google Scholar
  14. 14.
    Jordan, D., et al.: Web Services Business Process Execution Language Version 2.0. Technical report, IBM, Microsoft, et al (2007)Google Scholar
  15. 15.
    Leitner, P., Wetzstein, B., Rosenberg, F., Michlmayr, A., Dustdar, S., Leymann, F.: Runtime Prediction of Service Level Agreement Violations for Composite Services. In: Dan, A., Gittler, F., Toumani, F. (eds.) ICSOC/ServiceWave 2009. LNCS, vol. 6275, pp. 176–186. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  16. 16.
    Object Management Group. Business Process Modeling Notation (BPMN), Version 1.2 (January 2009)Google Scholar
  17. 17.
    Reynolds, J.C.: The discoveries of continuations. LISP and Symbolic Computation Journal 6, 233–247 (1993)CrossRefGoogle Scholar
  18. 18.
    Stein, S., Payne, T.R., Jennings, N.R.: Robust execution of service workflows using redundancy and advance reservations. IEEE T. Services Computing 4(2), 125–139 (2011)CrossRefGoogle Scholar
  19. 19.
    Tselentis, G., Dominigue, J., Galis, A., Gavras, A., Hausheer, D.: Towards the Future Internet: A European Research Perspective. IOS Press, Amsterdam (2009)Google Scholar
  20. 20.
    van der Aalst, W.M.P., ter Hofstede, A.H.M.: YAWL: Yet Another Workflow Language. Information Systems 30(4), 245–275 (2005)CrossRefGoogle Scholar
  21. 21.
    van der Aalst, W.M.P., Pesic, M.: DecSerFlow: Towards a Truly Declarative Service Flow Language. In: The Role of Business Processes in Service Oriented Architectures. Dagstuhl Seminar Proceedings, vol. 06291 (2006)Google Scholar
  22. 22.
    van der Aalst, W.M.P., ter Hofstede, A.H.M., Kiepuszewski, B., Barros, A.P.: Workflow Patterns. Distributed and Parallel Databases 14(1), 5–51 (2003)CrossRefGoogle Scholar
  23. 23.
    Wetzstein, B., Leitner, P., Rosenberg, F., Brandic, I., Dustdar, S., Leymann, F.: Monitoring and analyzing influential factors of business process performance. In: EDOC, pp. 141–150. IEEE Computer Society (2009)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Dragan Ivanović
    • 1
  • Manuel Carro
    • 1
    • 2
  • Manuel Hermenegildo
    • 1
    • 2
  1. 1.School of Computer ScienceT. University of Madrid (UPM)Spain
  2. 2.IMDEA Software InstituteSpain

Personalised recommendations