Importance Sampling of Probabilistic Contracts in Web Services

  • Ajay Kattepur
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7084)


With web services quality of service (QoS) modeled as random variables, the accuracy of sampled values for precise service level agreements (SLAs) come into question. Samples with lower spread are more accurate for calculating contractual obligations, which is typically not the case for web services QoS. Moreover, the extreme values in case of heavy-tailed distributions (eg. 99.99 percentile) are seldom observed through limited sampling schemes. To improve the accuracy of contracts, we propose the use of variance reduction techniques such as importance sampling. We demonstrate this for contracts involving demand and refuel operations within the Dell supply chain example. Using measured values, efficient forecasting of future deviation of contracts may also be performed. A consequence of this is a more precise definition of sampling, measurement and variance tolerance in SLA declarations.


Web Services QoS Importance Sampling SLA 


  1. 1.
    Alonso, G., Casati, F., Kuno, H., Machiraju, V.: Web Services: Concepts, Architectures and Applications. Springer (2004)Google Scholar
  2. 2.
    Bhoj, P., Singhal, S., Chutani, S.: SLA management in federated environments. In: Symp. on Dist. Mgmt. for the Networked Millennium, pp. 293–308 (1999)Google Scholar
  3. 3.
    Rosario, S., Benveniste, A., Haar, S., Jard, C.: Probabilistic QoS and soft contracts for transaction based Web services. In: IEEE ICWS (2007)Google Scholar
  4. 4.
    Rosario, S., Benveniste, A., Jard, C.: Flexible Probabilistic QoS Management of Orchestrations. Int. J. Web Service Res. 7(2), 21–42 (2010)CrossRefGoogle Scholar
  5. 5.
    Bucklew, J.A.: Introduction to rare event simulation. Springer, Heidelberg (2004)CrossRefzbMATHGoogle Scholar
  6. 6.
    Kapunscinski, R., Zhang, R.Q., Carbonneau, P., Moore, R., Reeves, B.: Inventory Decisions in Dells Supply Chain. Interfaces 34(3), 191–205 (2004)CrossRefGoogle Scholar
  7. 7.
    World Wide Web Consortium, “QoS for Web Services: Requirements and Possible Approaches,” W3C Working Group Note (November 2003)Google Scholar
  8. 8.
    Shaked, M., Shanthikumar, J.G.: Stochastic Orders. Springer Statistics (2006)Google Scholar
  9. 9.
    Makridakis, S., Wheelwright, S.: Adaptive Filtering: An Integrated Autoregressive/Moving Average Filter for Time Series Forecasting. Operational Research Quarterly 28(2), 425–437 (1977)CrossRefGoogle Scholar
  10. 10.
    Ludwig, H., Keller, A., Dan, A., King, R.P., Franck, R.: Web Service Level Agreement (WSLA) Language Specification. IBM Corporation (2003)Google Scholar
  11. 11.
    Bistarelli, S., Santini, F.S.: Soft Constraints for Quality Aspects in Service Oriented Architectures. In: Workshop on Service Oriented Computing, Italy (2009)Google Scholar
  12. 12.
    Hwang, S.Y., Wang, H., Tang, J., Srivastava, J.: A probabilistic approach to modeling and estimating the QoS of web-services-based workflows. Elsevier Information Sciences 177, 5484–5503 (2007)CrossRefzbMATHGoogle Scholar
  13. 13.
    Morio, J., Pastel, R., Le Gland, F.: An overview of importance splitting for rare event simulation. European J. of Physics 31, 1295–1303 (2010)CrossRefGoogle Scholar
  14. 14.
    Gallotti, S., Ghezzi, C., Mirandola, R., Tamburrelli, G.: Quality Prediction of Service Compositions Through Probabilistic Model Checking. In: Becker, S., Plasil, F., Reussner, R. (eds.) QoSA 2008. LNCS, vol. 5281, pp. 119–134. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  15. 15.
    Boschi, E., Denazis, S., Zseby, T.: A measurement framework for inter-domain SLA validation. Elsevier Computer Communications 29, 703–716 (2006)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Ajay Kattepur
    • 1
  1. 1.IRISA/INRIA, Campus Universitaire de BeaulieuRennesFrance

Personalised recommendations