Optimization of Complex QoS-Aware Service Compositions

  • Dieter Schuller
  • Artem Polyvyanyy
  • Luciano García-Bañuelos
  • Stefan Schulte
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7084)


In Service-oriented Architectures, business processes can be realized by composing loosely coupled services. The problem of QoS-aware service composition is widely recognized in the literature. Existing approaches on computing an optimal solution to this problem tackle structured business processes, i.e., business processes which are composed of XOR-block, AND-block, and repeat loop orchestration components. As of yet, OR-block and unstructured orchestration components have not been sufficiently considered in the context of QoS-aware service composition. The work at hand addresses this shortcoming. An approach for computing an optimal solution to the service composition problem is proposed considering the structured orchestration components, such as AND/XOR/OR-block and repeat loop, as well as unstructured orchestration components.


Service composition Quality of Service Optimization Structured and unstructured orchestration components 


  1. 1.
    Papazoglou, M.P.: Service-oriented computing: Concepts, characteristics and directions. In: Web Information Systems Engineering (WISE), pp. 3–12. IEEE Computer Society (2003)Google Scholar
  2. 2.
    Krafzig, D., Banke, K., Slama, D.: Enterprise SOA: Service-Oriented Architecture Best Practices. Prentice Hall PTR, Upper Saddle River (2004)Google Scholar
  3. 3.
    Berbner, R., Spahn, M., Repp, N., Heckmann, O., Steinmetz, R.: Heuristics for QoS-aware web service composition. In: International Conference on Web Services (ICWS), pp. 72–82. IEEE Computer Society (2006)Google Scholar
  4. 4.
    Anselmi, J., Ardagna, D., Cremonesi, P.: A QoS-based selection approach of autonomic grid services. In: Service-Oriented Computing Performance (SOCP), pp. 1–8. ACM (2007)Google Scholar
  5. 5.
    Menascé, D.A., Casalicchio, E., Dubey, V.K.: A heuristic approach to optimal service selection in service oriented architectures. In: Workshop on Software and Performance (WOSP), pp. 13–24. ACM (2008)Google Scholar
  6. 6.
    Huang, A.F.M., Lan, C.W., Yang, S.J.H.: An optimal QoS-based web service selection scheme. Information Sciences (ISCI) 179(19), 3309–3322 (2009)CrossRefGoogle Scholar
  7. 7.
    Strunk, A.: QoS-aware service composition: A survey. In: European Conference on Web Services (ECOWS), pp. 67–74. IEEE Computer Society (2010)Google Scholar
  8. 8.
    Hillier, F., Lieberman, G.: Introduction to Operations Research, 8th edn. Mc Graw Hill, Boston (2005)zbMATHGoogle Scholar
  9. 9.
    Taha, H.: Operations Research – An Introduction, 8th edn. Pearson Prentice Hall, London (2007)zbMATHGoogle Scholar
  10. 10.
    Jaeger, M.C., Mühl, G., Golze, S.: QoS-Aware Composition of Web Services: An Evaluation of Selection Algorithms. In: Meersman, R., Tari, Z. (eds.) OTM 2005. LNCS, vol. 3760, pp. 646–661. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  11. 11.
    Canfora, G., Penta, M.D., Esposito, R., Villani, M.L.: An approach for QoS-aware service composition based on genetic algorithms. In: Genetic and Evolutionary Computation Conference (GECCO), pp. 1069–1075. ACM (2005)Google Scholar
  12. 12.
    Gao, C., Cai, M., Chen, H.: QoS-aware service composition based on tree-coded genetic algorithm. In: International Computer Software and Applications Conference (COMPSAC), pp. 361–367. IEEE Computer Society (2007)Google Scholar
  13. 13.
    Lécué, F.: Optimizing QoS-Aware Semantic Web Service Composition. In: Bernstein, A., Karger, D.R., Heath, T., Feigenbaum, L., Maynard, D., Motta, E., Thirunarayan, K. (eds.) ISWC 2009. LNCS, vol. 5823, pp. 375–391. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  14. 14.
    Mabrouk, N.B., Georgantas, N., Issarny, V.: A semantic end-to-end QoS model for dynamic service oriented environments. In: Workshop on Principles of Engineering Service-oriented Systems (PESOS), pp. 34–41. IEEE Computer Society (2009)Google Scholar
  15. 15.
    Zeng, L., Benatallah, B., Ngu, A.H.H., Dumas, M., Kalagnanam, J., Chang, H.: QoS-aware middleware for web services composition. IEEE Transactions on Software Engineering (TSE) 30(5), 311–327 (2004)CrossRefGoogle Scholar
  16. 16.
    Ardagna, D., Pernici, B.: Adaptive service composition in flexible processes. IEEE Transactions on Software Engineering (TSE) 33(6), 369–384 (2007)CrossRefGoogle Scholar
  17. 17.
    van der Aalst, W.M.P., ter Hofstede, A.H.M., Kiepuszewski, B., Barros, A.P.: Workflow patterns. Distributed and Parallel Databases (DPD) 14(1), 5–51 (2003)CrossRefGoogle Scholar
  18. 18.
    Vanhatalo, J., Völzer, H., Koehler, J.: The refined process structure tree. Data & Knowledge Engineering (DKE) 68(9), 793–818 (2009)CrossRefGoogle Scholar
  19. 19.
    Polyvyanyy, A., Vanhatalo, J., Völzer, H.: Simplified Computation and Generalization of the Refined Process Structure Tree. In: Bravetti, M. (ed.) WS-FM 2010. LNCS, vol. 6551, pp. 25–41. Springer, Heidelberg (2011)Google Scholar
  20. 20.
    Schuller, D., Eckert, J., Miede, A., Schulte, S., Steinmetz, R.: QoS-aware service composition for complex workflows. In: International Conference on Internet and Web Applications and Services (ICIW), pp. 333–338. IEEE Computer Society (2010)Google Scholar
  21. 21.
    Schuller, D., Miede, A., Eckert, J., Lampe, U., Papageorgiou, A., Steinmetz, R.: QoS-Based Optimization of Service Compositions for Complex Workflows. In: Maglio, P.P., Weske, M., Yang, J., Fantinato, M. (eds.) ICSOC 2010. LNCS, vol. 6470, pp. 641–648. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  22. 22.
    Dumas, M., García-Bañuelos, L., Polyvyanyy, A., Yang, Y., Zhang, L.: Aggregate Quality of Service Computation for Composite Services. In: Maglio, P.P., Weske, M., Yang, J., Fantinato, M. (eds.) ICSOC 2010. LNCS, vol. 6470, pp. 213–227. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  23. 23.
    Kiepuszewski, B., ter Hofstede, A.H.M., Bussler, C.: On Structured Workflow Modelling. In: Wangler, B., Bergman, L.D. (eds.) CAiSE 2000. LNCS, vol. 1789, pp. 431–445. Springer, Heidelberg (2000)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Dieter Schuller
    • 1
  • Artem Polyvyanyy
    • 2
  • Luciano García-Bañuelos
    • 3
  • Stefan Schulte
    • 1
  1. 1.Multimedia Communications LabTechnische Universität DarmstadtGermany
  2. 2.Hasso Plattner Institute at the University of PotsdamGermany
  3. 3.Institute of Computer ScienceUniversity of TartuEstonia

Personalised recommendations