A Quality Aggregation Model for Service-Oriented Software Product Lines Based on Variability and Composition Patterns

  • Bardia Mohabbati
  • Dragan Gašević
  • Marek Hatala
  • Mohsen Asadi
  • Ebrahim Bagheri
  • Marko Bošković
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7084)


Quality evaluation is a challenging task in monolithic software systems. It is even more complex when it comes to Service-Oriented Software Product Lines (SOSPL), as it needs to analyze the attributes of a family of SOA systems. In SOSPL, variability can be planned and managed at the architectural level to develop a software product with the same set of functionalities but different degrees of non-functional quality attribute satisfaction. Therefore, architectural quality evaluation becomes crucial due to the fact that it allows for the examination of whether or not the final product satisfies and guarantees all the ranges of quality requirements within the envisioned scope. This paper addresses the open research problem of aggregating QoS attribute ranges with respect to architectural variability. Previous solutions for quality aggregation do not consider architectural variability for composite services. Our approach introduces variability patterns that can possibly occur at the architectural level of an SOSPL. We propose an aggregation model for QoS computation which takes both variability and composition patterns into account.


Software Product Line (SPL) Service-Oriented Architecture (SOA) non-functional properties QoS aggregation process family service variability variability management feature modeling 


  1. 1.
    Cohen, S.G., Krut, R.: Managing variation in services in a software product line context. Technical Report SEI-2010-TN-007, Carnegie Mellon University (2010)Google Scholar
  2. 2.
    Lee, J., Kotonya, G.: Combining service-orientation with product line engineering. IEEE Software 27, 35–41 (2010)CrossRefGoogle Scholar
  3. 3.
    Mohabbati, B., Hatala, M., Gašević, D., Asadi, M., Bošković, M.: Development and configuration of service-oriented systems families. In: Proceedings of the 2011 ACM Symposium on Applied Computing, SAC 2011, pp. 1606–1613. ACM, New York (2011)Google Scholar
  4. 4.
    Bagheri, E., Asadi, M., Gasevic, D., Soltani, S.: Stratified Analytic Hierarchy Process: Prioritization and Selection of Software Features. In: Bosch, J., Lee, J. (eds.) SPLC 2010. LNCS, vol. 6287, pp. 300–315. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  5. 5.
    Pohl, K., Böckle, G., van der Linden, F.J.: Software Product Line Engineering: Foundations, Principles and Techniques. Springer-Verlag New York, Inc. (2005)Google Scholar
  6. 6.
    Czarnecki, K., Antkiewicz, M.: Mapping Features to Models: A Template Approach Based on Superimposed Variants. In: Glück, R., Lowry, M. (eds.) GPCE 2005. LNCS, vol. 3676, pp. 422–437. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  7. 7.
    Kiepuszewski, B., ter Hofstede, A.H.M., Bussler, C.J.: On Structured Workflow Modelling. In: Wangler, B., Bergman, L.D. (eds.) CAiSE 2000. LNCS, vol. 1789, pp. 431–445. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  8. 8.
    Vanhatalo, J., Völzer, H., Koehler, J.: The refined process structure tree. Data Knowl. Eng. 68, 793–818 (2009)CrossRefGoogle Scholar
  9. 9.
    Zeng, L., Benatallah, B., Ngu, A., Dumas, M., Kalagnanam, J., Chang, H.: QoS-aware middleware for web services composition. IEEE Transactions on Software Engineering 30, 311–327 (2004)CrossRefGoogle Scholar
  10. 10.
    Yu, T., Lin, K.-J.: Service Selection Algorithms for Composing Complex Services with Multiple qoS Constraints. In: Benatallah, B., Casati, F., Traverso, P. (eds.) ICSOC 2005. LNCS, vol. 3826, pp. 130–143. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  11. 11.
    Cardoso, J., Sheth, A.P., Miller, J.A., Arnold, J., Kochut, K.: Quality of service for workflows and web service processes. J. Web Sem. 1, 281–308 (2004)CrossRefGoogle Scholar
  12. 12.
    Jaeger, M.C., Rojec-Goldmann, G., Muhl, G.: Qos aggregation for web service composition using workflow patterns. In: Proceedings of the Eighth IEEE International Conference on Enterprise Distributed Object Computing, pp. 149–159. IEEE Computer Society, Washington, DC, USA (2004)Google Scholar
  13. 13.
    Dumas, M., García-Bañuelos, L., Polyvyanyy, A., Yang, Y., Zhang, L.: Aggregate Quality of Service Computation for Composite Services. In: Maglio, P.P., Weske, M., Yang, J., Fantinato, M. (eds.) ICSOC 2010. LNCS, vol. 6470, pp. 213–227. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  14. 14.
    Van Der Aalst, W.M.P., ter Hofstede, A.H.M., Kiepuszewski, B., Barros, A.P.: Workflow patterns. Distrib. Parallel Databases 14, 5–51 (2003)CrossRefGoogle Scholar
  15. 15.
    Vanhatalo, J., Völzer, H., Leymann, F.: Faster and More Focused Control-Flow Analysis for Business Process Models Through SESE Decomposition. In: Krämer, B.J., Lin, K.-J., Narasimhan, P. (eds.) ICSOC 2007. LNCS, vol. 4749, pp. 43–55. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  16. 16.
    McConnell, R.M., de Montgolfier, F.: Linear-time modular decomposition of directed graphs. Discrete Appl. Math. 145, 198–209 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Ouyang, C., Dumas, M., van der Aalst, W.M.P., ter Hofstede, A.H.M., Mendling, J.: From business process models to process-oriented software systems. ACM Trans. Softw. Eng. Methodol. 19, 2:1–2:37 (2009)CrossRefGoogle Scholar
  18. 18.
    van der Aalst, W.M.P.: Configurable Services in the Cloud: Supporting Variability While Enabling Cross-Organizational Process Mining. In: Meersman, R., Dillon, T.S., Herrero, P. (eds.) OTM 2010. LNCS, vol. 6426, pp. 8–25. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  19. 19.
    Hwang, S.Y., Wang, H., Tang, J., Srivastava, J.: A probabilistic approach to modeling and estimating the qos of web-services-based workflows. Inf. Sci. 177, 5484–5503 (2007)CrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Bardia Mohabbati
    • 1
  • Dragan Gašević
    • 1
    • 2
  • Marek Hatala
    • 1
  • Mohsen Asadi
    • 1
  • Ebrahim Bagheri
    • 2
    • 3
  • Marko Bošković
    • 1
    • 2
  1. 1.Simon Fraser UniversityCanada
  2. 2.Athabasca UniversityCanada
  3. 3.University of British ColumbiaCanada

Personalised recommendations