Computing Degree of Parallelism for BPMN Processes

  • Yutian Sun
  • Jianwen Su
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7084)


For sequential processes and workflows (i.e., pipelined tasks), each enactment (process instance) only has one task being performed at each time instant. When a process allows tasks to be performed in parallel, an enactment may have a number of tasks being performed concurrently and this number may change in time. We define the “degree of parallelism” of a process as the maximum number of tasks to be performed concurrently during an execution of the process. This paper initiates a study on computing degree of parallelism for three classes of BPMN processes, which are defined based on the use of BPMN gateways. For each class, an algorithm for computing degree of parallelism is presented. In particular, the algorithms for “homogeneous” and acyclic “choice-less” processes (respectively) have polynomial time complexity, while the algorithm for “asynchronous” processes runs in exponential time.


Business Process Online Appendix Outgoing Edge Homogeneous Process Execution Planning 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Abiteboul, S., Segoufin, L., Vianu, V.: Modeling and verifying active xml artifacts. Data Engineering Bulletin 32(3), 10–15 (2009)Google Scholar
  2. 2.
    Barker, A., van Hemert, J.: Scientific Workflow: A Survey and Research Directions. In: Wyrzykowski, R., Dongarra, J., Karczewski, K., Wasniewski, J. (eds.) PPAM 2007. LNCS, vol. 4967, pp. 746–753. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  3. 3.
    Bhattacharya, K., Gerede, C., Hull, R., Liu, R., Su, J.: Towards Formal Analysis of Artifact-Centric Business Process Models. In: Alonso, G., Dadam, P., Rosemann, M. (eds.) BPM 2007. LNCS, vol. 4714, pp. 288–304. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  4. 4.
    Business Process Model and Notation (BPMN), version 2.0 (January 2011),
  5. 5.
    Chan, T., Ibarra, O.H.: On the finite-valuedness problem for sequential machines. Theoretical Computer Science 23(1), 95–101 (1983)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Crampton, J.: A reference monitor for workflow systems with constrained task execution. In: Proc. 10th ACM Symp. on Access Control Models and Technologies, SACMAT (2005)Google Scholar
  7. 7.
    Deutsch, A., Hull, R., Patrizi, F., Vianu, V.: Automatic verification of data-centric business processes. In: Proc. Int. Conf. on Database Theory (ICDT), pp. 252–267 (2009)Google Scholar
  8. 8.
    Dijkman, R.M., Dumas, M., Ouyang, C.: Semantics and analysis of business process models in bpmn. Inf. Softw. Technol. 50, 1281–1294 (2008)CrossRefGoogle Scholar
  9. 9.
    Gurari, E.M., Ibarra, O.H.: A note on finite-valued and finitely ambiguous transducers. Theory of Computing Systems 16(1), 61–66 (1983)MathSciNetzbMATHGoogle Scholar
  10. 10.
    Hull, R., Damaggio, E., Fournier, F., Gupta, M., Heath III, F., Hobson, S., Linehan, M., Maradugu, S., Nigam, A., Sukaviriya, P., Vaculín, R.: Introducing the guard-stage-milestone approach to specifying business entity lifecycles. In: Proc. Workshop on Web Services and Formal Methods (WS-FM). Springer, Heidelberg (2010)Google Scholar
  11. 11.
    Juve, G., Deelman, E.: Scientific workflows and clouds. Crossroads 16(3) (March 2010)Google Scholar
  12. 12.
    Nigam, A., Caswell, N.S.: Business artifacts: An approach to operational specification. IBM Systems Journal 42(3), 428–445 (2003)CrossRefGoogle Scholar
  13. 13.
    Potapova, A., Su, J.: On nondeterministic workflow executions. In: Proc. Workshop on Web Services and Formal Methods, WSFM (2010)Google Scholar
  14. 14.
    Russell, N., van der Aalst, W.M.P., ter Hofstede, A.H.M., Edmond, D.: Workflow Resource Patterns: Identification, Representation and Tool Support. In: Pastor, Ó., Falcão e Cunha, J. (eds.) CAiSE 2005. LNCS, vol. 3520, pp. 216–232. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  15. 15.
    Sakarovitch, J., de Souza, R.: On the Decidability of Bounded Valuedness for Transducers. In: Ochmański, E., Tyszkiewicz, J. (eds.) MFCS 2008. LNCS, vol. 5162, pp. 588–600. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  16. 16.
    Senkul, P., Kifer, M., Toroslu, I.H.: A logical framework for scheduling workflows under resource allocation constraints. In: Proc. 28th Int. Conf. on Very Large Data Bases (2002)Google Scholar
  17. 17.
    Senkul, P., Toroslu, I.H.: An architecture for workflow scheduling under resource allocation constraints. Information Systems 30, 399–422 (2005)CrossRefGoogle Scholar
  18. 18.
    Sun, Y., Su, J.: On-line Appendix to the Paper “Computing Degree of Parallelism for BPMN Processes” (2011),
  19. 19.
    van der Aalst, W.M.P.: Verification of workflow nets. In: Azéma, P., Balbo, G. (eds.) ICATPN 1997. LNCS, vol. 1248. Springer, Heidelberg (1997)Google Scholar
  20. 20.
    van der Aalst, W.M.P.: Workflow Verification: Finding Control-Flow Errors Using Petri-Net-Based Techniques. In: van der Aalst, W.M.P., Desel, J., Oberweis, A. (eds.) Business Process Management. LNCS, vol. 1806, p. 161. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  21. 21.
    van der Aalst, W.M.P., Pesic, M.: DecSerFlow: Towards a Truly Declarative Service Flow Language. In: Bravetti, M., Núñez, M., Tennenholtz, M. (eds.) WS-FM 2006. LNCS, vol. 4184, pp. 1–23. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  22. 22.
    van der Aalst, W.M.P., ter Hofstede, A.H.M.: YAWL: yet another workflow language. Information Systems 30(4), 245–275 (2005)CrossRefGoogle Scholar
  23. 23.
    Weber, A.: On the valuedness of finite transducers. Acta Inf. 27, 749–780 (1990)MathSciNetCrossRefzbMATHGoogle Scholar
  24. 24.
    Yu, Z., Shi, W.: An adaptive rescheduling strategy for grid workflow applications. In: Proc. IPDPS (2007)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Yutian Sun
    • 1
  • Jianwen Su
    • 1
  1. 1.Department of Computer ScienceUniversity of CaliforniaSanta BarbaraUSA

Personalised recommendations