Multi-scale Integration of Slope Data on an Irregular Mesh

  • Rafael F. V. Saracchini
  • Jorge Stolfi
  • Helena C. G. Leitão
  • Gary Atkinson
  • Melvyn L. Smith
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7087)

Abstract

We describe a fast and robust gradient integration method that computes scene depths (or heights) from surface gradient (or surface normal) data such as would be obtained by photometric stereo or interferometry. Our method allows for uncertain or missing samples, which are often present in experimentally measured gradient maps; for sharp discontinuities in the scene’s depth, e.g. along object silhouette edges; and for irregularly spaced sampling points. To accommodate these features of the problem, we use an original and flexible representation of slope data, the weight-delta mesh. Like other state of the art solutions, our algorithm reduces the problem to a system of linear equations that is solved by Gauss-Seidel iteration with multi-scale acceleration. Its novel key step is a mesh decimation procedure that preserves the connectivity of the initial mesh. Tests with various synthetic and measured gradient data show that our algorithm is as accurate and efficient as the best available integrators for uniformly sampled data. Moreover our algorithm remains accurate and efficient even for large sets of weakly-connected instances of the problem, which cannot be efficiently handled by any existing algorithm.

Keywords

Photometric Stereo Gradient Data Irregular Mesh Slope Data Edge Equation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Agrawal, A.: Matlab/Octave code for [3] (2006), http://www.umiacs.umd.edu/~aagrawal/software.html
  2. 2.
    Agrawal, A., Chellappa, R., Raskar, R.: An algebraic approach to surface reconstruction from gradient fields. In: Proc. 7th ICCV, pp. 174–181 (2005)Google Scholar
  3. 3.
    Agrawal, A., Raskar, R., Chellappa, R.: What is the Range of Surface Reconstructions From a Gradient Field? In: Leonardis, A., Bischof, H., Pinz, A. (eds.) ECCV 2006. LNCS, vol. 3951, pp. 578–591. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  4. 4.
    Cormen, T.H., Leiserson, C.E., Rivest, R.L.: Introduction to Algorithms. McGraw-Hill (1990)Google Scholar
  5. 5.
    Fraile, R., Hancock, E.R.: Combinatorial surface integration. In: Proc. 18th ICPR 2006, vol. 1, pp. 59–62 (2006)Google Scholar
  6. 6.
    Frankot, R.T., Chellappa, R.: A method for enforcing integrability in shape from shading algorithms. IEEE TPAMI 10(4), 439–451 (1988)CrossRefMATHGoogle Scholar
  7. 7.
    Georghiades, Belhumeur, Kriegman: Illumination cone models for face recognition under variable lighting and pose. IEEE TPAMI 23, 643–660 (2001)CrossRefGoogle Scholar
  8. 8.
    Horn, B.K.P.: Height and gradient from shading. IJCV 5(1), 37–75 (1990)CrossRefGoogle Scholar
  9. 9.
    Horn, B.K.P., Brooks, M.J.: Shape from Shading. MIT Press (1989)Google Scholar
  10. 10.
    Horn, B.K.P., Woodham, R.J., Silver, W.M.: Determining shape and reflectance using multiple images. Technical Report AI Memo 490. MIT (1978)Google Scholar
  11. 11.
    Kampel, M., Sablatnig, R.: 3D puzzling of archeological fragments. In: Skocaj, D. (ed.) Proc. of 9th Computer Vision Winter Workshop, pp. 31–40 (2004)Google Scholar
  12. 12.
    Kirkpatrick, D.G.: Optimal search in planar subdivisions. SIAM J. on Computing 12, 28–35 (1983)MathSciNetCrossRefMATHGoogle Scholar
  13. 13.
    Smith, L.N., Hansen, M.F., Atkinson, G.A., Smith, M.L.: 3D face reconstructions from photometric stereo using near infrared and visible light. Computer Vision and Image Understanding 114, 942–951 (2010)CrossRefGoogle Scholar
  14. 14.
    Ng, Wu, Tang: Surface-from-gradients without discrete integrability enforcement: A Gaussian kernel approach. IEEE TPAMI 32 (November 2010)Google Scholar
  15. 15.
    Robles-Kelly, A., Hancock, E.R.: Surface height recovery from surface normals using manifold embedding. In: Proc. ICIP (October 2004)Google Scholar
  16. 16.
    Saracchini, Stolfi, Leitao, Atkinson, Smith: Multi-scale depth from slope with weights. In: Proceedings of the BMVC, pp. 40.1–40.12. BMVA Press (2010)Google Scholar
  17. 17.
    Smith, G.D.J., Bors, A.G.: Height estimation from vector fields of surface normals. In: Proc. IEEE DSP, pp. 1031–1034 (2002)Google Scholar
  18. 18.
    Smith, M.L., Smith, L.N.: Polished Stone Surface Inspection using Machine Vision, page 33. OSNET (2004)Google Scholar
  19. 19.
    Terzopoulos, D.: The computation of visible-surface representations. IEEE TPAMI 10(4), 417–438 (1988)CrossRefMATHGoogle Scholar
  20. 20.
    Terzopoulos, D.: Image analysis using multigrid relaxation methods. IEEE TPAMI PAMI 8(2), 129–139 (1986)CrossRefGoogle Scholar
  21. 21.
    Wei, T., Klette, R.: Height from gradient using surface curvature and area constraints. In: Proc. 3rd ICVGIP (2002)Google Scholar
  22. 22.
    Woodham, R.J.: Photometric method for determining suface orientation from multiple images. Optical Engineering 19(1), 139–144 (1980)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Rafael F. V. Saracchini
    • 1
  • Jorge Stolfi
    • 1
  • Helena C. G. Leitão
    • 2
  • Gary Atkinson
    • 3
  • Melvyn L. Smith
    • 3
  1. 1.State University of CampinasCampinasBrazil
  2. 2.Fluminense Federal UniversityNiteroiBrazil
  3. 3.University of West EnglandBristolUnited Kingdom

Personalised recommendations