A Local Variance-Based Bilateral Filtering for Artifact-Free Detail- and Edge-Preserving Smoothing

  • Cuong Cao Pham
  • Synh Viet Uyen Ha
  • Jae Wook Jeon
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7088)

Abstract

Edge-preserving smoothing has recently emerged as a crucial technique for a variety of computer vision and image processing applications. The idea is to smooth the small scale variations, while preserving edges and fine details in the image, without causing halo artifacts in detail enhancement. In this paper, we propose a modified bilateral filter model that has better behavior near edges and details than the standard model does. The edge-stopping function takes into account the intensity difference and the local variance of the filter windows, which provides insightful information about the local pixel distribution. We demonstrate the existing detail-related bilateral-based applications can achieve better results by simply switching from the standard model to our proposed model. In particular, we applied our method to detail-preserving image denoising and detail enhancement.

Keywords

Edge-preserving smoothing bilateral filter detail enhancement image denoising 

References

  1. 1.
    Aurich, V., Weule, J.: Non-linear gaussian filters performing edge preserving diffusion. In: Proceedings of the DAGM Symposium, pp. 538–545 (1995)Google Scholar
  2. 2.
    Barash, D.: A Fundamental Relationship Between Bilateral Filtering, Adaptive Smoothing, and the Nonlinear Diffusion Equation. IEEE Transactions on Pattern Analysis and Machine Intelligence 24(6), 844–847 (2002)CrossRefGoogle Scholar
  3. 3.
    Black, M.J., Sapiro, G., Marimont, D.H., Heeger, D.: Robust anisotropic diffusion. IEEE Transactions on Image Processing 7(3), 421–432 (1998)CrossRefGoogle Scholar
  4. 4.
    Buades, A., Coll, B., Morel, J.M.: A non-local algorithm for image denoising. In: IEEE Intl. Conf. on Computer Vision and Pattern Recognition (CVPR), pp. 60–65 (2005)Google Scholar
  5. 5.
    Buades, A., Coll, B., Morel, J.M.: The staircasing effect in neighborhood filters and its solution. IEEE Transactions on Image Processing 15(6), 1499–1505 (2006)CrossRefGoogle Scholar
  6. 6.
    Chao, S.M., Tsai, D.M., Chiu, W.Y., Li, W.C.: Anisotropic diffusion-based detail-preserving smoothing for image restoration. In: IEEE Intl. Conf. on Image Processing (ICIP), pp. 4145–4149 (2010)Google Scholar
  7. 7.
    Chen, J., Paris, S., Durand, F.: Real-time edge-aware image processing with the bilateral grid. ACM Transactions on Graphics 26(3) (2007)Google Scholar
  8. 8.
    Choudhury, P., Tumblin, J.: The trilateral filter for high contrast images and meshes. In: Proceedings of the Eurographics Symposium on Rendering, pp. 186–196 (2003)Google Scholar
  9. 9.
    Dabov, K., Foi, A., Katkovnik, V., Egiazarian, K.: BM3D Image Denoising with Shape-Adaptive Principal Component Analysis. In: Workshop on Signal Processing with Adaptive Sparse Structured Representation (SPARS) (2009)Google Scholar
  10. 10.
    Durand, F., Dorsey, J.: Fast Bilateral Filtering for the Display of High-Dynamic-Range Images. ACM Transactions on Graphics 21(3), 257–266 (2002)CrossRefGoogle Scholar
  11. 11.
    Elad, M.: On the bilateral filter and ways to improve it. IEEE Transactions on Image Processing 11(10), 1141–1151 (2002)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Farbman, Z., Fattal, R., Lischinski, D., Szeliski, R.: Edge-Preserving Decompositions for Multi-Scale Tone and Detail Manipulation. ACM Transactions on Graphics 27(3) (2008)Google Scholar
  13. 13.
    Gupta, M.D., Xiao, J.: Bi-affinity Filter: A Bilateral Type Filter for Color Images. In: ECCV Workshop on Color and Reflectance in Computer Vision, CRICV (2010)Google Scholar
  14. 14.
    He, K., Sun, J., Tang, X.: Guided Image Filtering. In: Daniilidis, K., Maragos, P., Paragios, N. (eds.) ECCV 2010, Part I. LNCS, vol. 6311, pp. 1–14. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  15. 15.
    Kass, M., Solomon, J.: Smoothed Local Histogram Filters. ACM Transactions on Graphics 29(4) (2010)Google Scholar
  16. 16.
    Levin, A., Lischinski, D., Weiss, Y.: Colorization using Optimization. ACM Transactions on Graphics 23(3), 689–694 (2004)CrossRefGoogle Scholar
  17. 17.
    Paris, S., Durand, F.: A Fast Approximation of the Bilateral Filter using a Signal Processing Approach. International Journal of Computer Vision 81(1), 24–52 (2009)CrossRefGoogle Scholar
  18. 18.
    Paris, S., Kornprobst, P., Tumblin, J., Durand, F.: Bilateral Filtering: Theory and Applications. In: Foundations and Trends in Computer Graphics and Vision (2009)Google Scholar
  19. 19.
    Penora, P., Malik, J.: Scale-space and edge detection using anisotropic diffusion. IEEE Transactions on Pattern Analysis and Machine Intelligence 12(7), 629–639 (1990)CrossRefGoogle Scholar
  20. 20.
    Pham, T.Q., Van Vliet, L.J.: Separable bilateral filtering for fast video preprocessing. In: Proceedings of the IEEE Intl. Conf. on Multimedia and Expo (2005)Google Scholar
  21. 21.
    Smith, S.M., Brady, J.M.: SUSAN - A new approach to low level image processing. International Journal of Computer Vision 23(1), 45–78 (1997)CrossRefGoogle Scholar
  22. 22.
    Subr, K., Soler, C., Durand, F.: Edge-preserving Multiscale Image Decomposition based on Local Extrema. ACM Transactions on Graphics 28(5) (2009)Google Scholar
  23. 23.
    Tomasi, C., Manduchi, R.: Bilateral filtering for gray and color images. In: Proceedings of the IEEE Intl. Conf. on Computer Vision (ICCV), pp. 839–846 (1998)Google Scholar
  24. 24.
    Tumblin, J., Turk, G.: LCIS: A boundary hierarchy for detail-preserving contrast reduction. In: ACM SIGGRAPH 1999, pp. 83–90 (1999)Google Scholar
  25. 25.
    Weickert, J.: Anisotropic Diffusion in Image Processing, Stuttgart, Germany (1998)Google Scholar
  26. 26.
    Wong, A.: Adaptive bilateral filtering of image signals using local phase characteristics. Signal Processing 88(6), 1615–1619 (2008)CrossRefMATHGoogle Scholar
  27. 27.
    Zhang, B., Allebach, J.P.: Adaptive Bilateral Filter for Sharpness Enhancement and Noise Removal. IEEE Transactions on Image Processing 17(5), 664–678 (2008)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Cuong Cao Pham
    • 1
  • Synh Viet Uyen Ha
    • 1
  • Jae Wook Jeon
    • 1
  1. 1.School of Information and Communication EngineeringSungkyunkwan UniversitySuwonSouth Korea

Personalised recommendations