Digital Hologram Compression Using Correlation of Reconstructed Object Images

  • Jae-Young Sim
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7088)


An efficient digital hologram compression algorithm is proposed using the correlation in the complex valued object image. While the pure values are almost uncorrelated, the magnitude values exhibit a strong correlation between the real and imaginary part object images. Therefore, we adaptively employ the encoding result of one image to encode another image. Both images are first wavelet transformed and the wavelet coefficients are encoded using the SPIHT method. We used the significance encoding result of the real part image as the contexts of arithmetic coder for encoding the imaginary part image. Experimental results demonstrate that the proposed algorithm yields a better compression performance than the conventional method.


Digital hologram digital hologram compression context-adaptive arithmetic coding 


  1. 1.
  2. 2.
    Antonini, M., Barlaud, M., Mathieu, P., Daubechies, I.: Image coding using wavelet transform. IEEE Trans. Image Processing 1(2), 205–220 (1992)CrossRefGoogle Scholar
  3. 3.
    Darakis, E., Naughton, T.J., Soraghan, J.J.: Compression defects in different reconstructions from phase-shifting digital holographic data. Appl. Opt. 46(21), 4579–4586 (2007)CrossRefGoogle Scholar
  4. 4.
    Darakis, E., Soraghan, J.J.: Use of Fresnelets for phase-shifting digital hologram compression. IEEE Trans. Image Processing 15(12), 3804–3811 (2006)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Darakis, E., Soraghan, J.J.: Reconstruction domain compression of phase-shifting digital holograms. Appl. Opt. 46(3), 351–356 (2007)CrossRefGoogle Scholar
  6. 6.
    Frauel, Y., Naughton, T.J., Matoba, O., Tajahuerce, E., Javidi, B.: Three-dimensional imaging and processing using computational holographic imaging. Proc. of IEEE 94(3), 636–653 (2006)CrossRefGoogle Scholar
  7. 7.
    Gabor, D.: A new microscopic principle. Nature 161, 777–778 (1948)CrossRefGoogle Scholar
  8. 8.
    Goodman, J.W., Lawrence, R.W.: Digital image formation from electronically detected holograms. Appl. Phys. Lett. 11, 77–79 (1967)CrossRefGoogle Scholar
  9. 9.
    Moffat, A., Neal, R., Witten, I.H.: Arithmetic coding revisited. In: Proc. IEEE Data Compression Conference, pp. 202–211 (March 1995)Google Scholar
  10. 10.
    Naughton, T.J., Frauel, Y., Javidi, B., Tajahuerce, E.: Compression of digital holograms for three-dimensional object reconstruction and recognition. Appl. Opt. 41, 4124–4132 (2002)CrossRefGoogle Scholar
  11. 11.
    Said, A., Pearlman, W.: A new, fast, and efficient image codec based on set partitioning in hierarchical trees. IEEE Trans. Circuits Syst. Video Technol. 6, 243–250 (1996)CrossRefGoogle Scholar
  12. 12.
    Schnars, U., Jueptner, W.: Digital holography: digital hologram recording, numerical reconstruction, and related techniques. Springer, Heidelberg (2005)Google Scholar
  13. 13.
    Schnars, U., Jüptner, W.: Direct recording of holograms by a CCD target and numerical reconstruction. Appl. Opt. 33, 179–181 (1994)CrossRefGoogle Scholar
  14. 14.
    Schnars, U., Jüptner, W.: Digital recording and numerical reconstruction of holograms. Meas. Sci. Technol. 13, R81–R101 (2002)CrossRefGoogle Scholar
  15. 15.
    Shortt, A.E., Naughton, T.J., Javidi, B.: Compression of digital holograms of three-dimensional objects using wavelets. Opt. Expr. 14(7), 2625–2630 (2006)CrossRefGoogle Scholar
  16. 16.
    Shortt, A.E., Naughton, T.J., Javidi, B.: Histogram approaches for lossy compression of digital holograms of three-dimensional objects. IEEE Trans. Image Processing 16(6), 1548–1556 (2007)MathSciNetCrossRefGoogle Scholar
  17. 17.
    Yamaguchi, I., Zhang, T.: Phase-shifting digital holography. Opt. Lett. 13(9), 1268–1270 (1997)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Jae-Young Sim
    • 1
  1. 1.School of Electrical and Computer EngineeringUlsan National Institute of Science and TechnologyUlsanSouth Korea

Personalised recommendations