Bifocal Matching Using Multiple Geometrical Solutions

  • Miguel Carrasco
  • Domingo Mery
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7088)

Abstract

Determining point-to-point correspondence in multiple images is a complex problem because of the multiple geometric and photometric transformations and/or occlusions that the same point can undergo in corresponding images. This paper presents a method of point-to-point correspondence analysis based on the combination of two techniques: (1) correspondence analysis through similarity of invariant features, and (2) combination of multiple partial solutions through bifocal geometry. This method is quite novel because it allows the determination of point-to-point geometric correspondence by means of the intersection of multiple partial solutions that are weighted through the MLESAC algorithm. The main advantage of our method is the extension of the algorithms based on the correspondence of invariant descriptors, generalizing the problem of correspondence to a geometric model in multiple views. In the sequences used we got an F-score = 97% at a distance of less than 1 pixel. These results show the effectiveness of the method and potentially can be used in a wide range of applications.

Keywords

computer vision multiple view geometry correspondence problem tracking 

References

  1. 1.
    Barron, J.L., Fleet, D.J., Beauchemin, S.S.: Performance of optical flow techniques. International Journal of Computer Vision 12(1), 43–77 (1994)CrossRefGoogle Scholar
  2. 2.
    Bartoli, A., Sturm, P.: Nonlinear estimation of the fundamental matrix with minimal parameters. IEEE Transactions on Pattern Analysis and Machine Intelligence 26(3), 426–432 (2004)CrossRefGoogle Scholar
  3. 3.
    Bay, H., Ess, A., Tuytelaars, T., Gool, L.: Surf: Speeded up robust features. Computer Vision and Image Understanding (CVIU) 110(3), 346–359 (2008)CrossRefGoogle Scholar
  4. 4.
    Caspi, Y., Irani, M.: A step towards sequence-to-sequence alignment. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 682–689. IEEE, Hilton Head Island (2000)Google Scholar
  5. 5.
    Caspi, Y., Simakov, D., Irani, M.: Feature-based sequence-to-sequence matching. International Journal of Computer Vision 68(1) (2006)Google Scholar
  6. 6.
    Dempster, A.P., Laird, N., Rubin, D.B.: Maximum likelihood from incomplete data via the em algorithm. Journal of the Royal Statistical Society, Series B 39, 1–38 (1977)MathSciNetMATHGoogle Scholar
  7. 7.
    Fischler, M., Bolles, R.: Random sample consensus: a paradigm for model fitting with applications to image analysis and automated cartography. Communications of the ACM 24(6), 381–395 (1981)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Fitzgibbon, A.: Robust registration of 2d and 3d point sets. Image and Vision Computing 21(13-14) (December 2003)Google Scholar
  9. 9.
    Hartley, R., Zisserman, A.: Multiple View Geometry in Computer Vision. Cambridge University Press, Cambridge (2000)MATHGoogle Scholar
  10. 10.
    Kadir, T., Zisserman, A., Brady, M.: An Affine Invariant Salient Region Detector. In: Pajdla, T., Matas, J. (eds.) ECCV 2004. LNCS, vol. 3021, pp. 228–241. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  11. 11.
    Lowe, D.G.: Distinctive image features from scale-invariant keypoints. Int. J. Comput. Vis. 60(2), 91–110 (2004)CrossRefGoogle Scholar
  12. 12.
    Moreels, P., Perona, P.: Evaluation of features detectors and descriptors based on 3d objects. International Journal of Computer Vision 73(3) (2007)Google Scholar
  13. 13.
    Olson, D.L., Delen, D.: Advanced Data Mining Techniques. Springer, Heidelberg (2008)MATHGoogle Scholar
  14. 14.
    Romano, R.: Projective Minimal Analysis of Camera Geometry. Phd. thesis, M.I.T., USA (May 2002)Google Scholar
  15. 15.
    Tordoff, B.J., Murray, D.W.: Guided-mlesac: faster image transform estimation by using matching priors. IEEE Transactions on Pattern Analysis and Machine Intelligence 27(10), 1523–1535 (2005)CrossRefGoogle Scholar
  16. 16.
    Torr, P.: Bayesian model estimation and selection for epipolar geometry and generic manifold fitting. International Journal of Computer Vision 50(1), 35–61 (2002)MathSciNetCrossRefMATHGoogle Scholar
  17. 17.
    Torr, P., Zisserman, A.: Mlesac: A new robust estimator with application to estimating image geometry. Computer Vision and Image Understanding 78, 138–156 (2000)CrossRefGoogle Scholar
  18. 18.
    Tuytelaars, T., Mikolajczyk, K.: Local invariant feature detectors: A survey. Computer Graphics and Vision 3(3), 177–280 (2007)CrossRefGoogle Scholar
  19. 19.
    Vidal, R., Ma, Y., Soatto, S., Sastry, S.: Two-view multibody structure from motion. International Journal of Computer Vision 68(1) (June 2006)Google Scholar
  20. 20.
    Zhang, Z., Deriche, R., Faugeras, O., Luong, Q.T.: A robust technique for matching two uncalibrated images through the recovery of the unknown epipolar geometry. Artificial Intelligence 78(1-2), 87–119 (1995)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Miguel Carrasco
    • 1
  • Domingo Mery
    • 2
  1. 1.Escuela de Informática y TelecomunicacionesUniversidad Diego PortalesChile
  2. 2.Departamento de Ciencia de la ComputaciónPontificia Universidad Católica de ChileChile

Personalised recommendations