Fuzzified Tree Search in Real Domain Games

  • Dmitrijs Rutko
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7094)


Fuzzified game tree search algorithm is based on the idea that the exact game tree evaluation is not required to find the best move. Therefore, pruning techniques may be applied earlier resulting in faster search and greater performance. Applied to an abstract domain, it outperforms the existing ones such as Alpha-Beta, PVS, Negascout, NegaC*, SSS*/ Dual* and MTD(f). In this paper we present experimental results in real domain games, where the proposed algorithm demonstrated 10 percent performance increase over the existing algorithms.


game tree search alpha-beta pruning fuzzified search algorithm performance 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Marsland, T.A., Campbell, M.: Parallel Search of Strongly Ordered Game Trees. ACM Comput. Surv. (1982) Google Scholar
  2. 2.
    Pearl, J.: The solution for the branching factor of the alpha-beta pruning algorithm and its optimality. Communications of the ACM (1982) Google Scholar
  3. 3.
    Reinefeld, A.: An Improvement to the Scout Tree-Search Algorithm. ICCA Journal 6(4), 4–14 (1983) Google Scholar
  4. 4.
    Reinefeld, A.: Spielbaum-Suchverfahren. Informatik-Fachbericht, vol. 200. Springer, Heidelberg (1989)zbMATHGoogle Scholar
  5. 5.
    Weill, J.C.: The NegaC* search. ICCA Journal (March 1992) Google Scholar
  6. 6.
    Plaat, A., Schaeffer, J., Pijls, W., de Bruin, A.: A New Paradigm for Minimax Search, Technical Report EUR-CS-95-03 (1994) Google Scholar
  7. 7.
    Plaat, A., Schaeffer, J., Pijls, W., de Bruin, A.: Best-First and Depth-First Minimax Search in Practice. In: Proceedings of Computing Science in The Netherlands (1995) Google Scholar
  8. 8.
    Plaat, A., Schaeffer, J., Pijls, W., de Bruin, A.: An Algorithm Faster than NegaScout and SSS* in Practice. In: Computer Strategy Game Programming Workshop at the World Computer Chess Championship (1995) Google Scholar
  9. 9.
    Plaat, A., Schaeffer, J., Pijls, W., de Bruin, A.: Best-First Fixed-Depth Minimax Algorithms. Artificial Intelligence 87 (1996)Google Scholar
  10. 10.
    Björnsson, Y.: Selective Depth-First Game-Tree Search. Ph.D. thesis, University of Alberta (2002) Google Scholar
  11. 11.
    Russell, S.J., Norvig, P.: Artificial Intelligence: A Modern Approach, 3rd edn. Pearson Education, Inc., Upper Saddle River (2010)zbMATHGoogle Scholar
  12. 12.
    Rutko, D.: Fuzzified Algorithm for Game Tree Search. In: Second Brazilian Workshop of the Game Theory Society, BWGT 2010 (2010) Google Scholar
  13. 13.
    Rutko, D.: Fuzzified Algorithm for Game Tree Search with Statistical and Analytical Evaluation, Scientific Papers, vol. 770, pp. 90–111. University of Latvia (2011)Google Scholar
  14. 14.
    Hey That’s My Fish - German Board Games,
  15. 15.
    Review of Hey! That’s My Fish! – RPGnet,
  16. 16.
    Hey! That’s My Fish! Remarkable Depth for Minimal Rules,

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Dmitrijs Rutko
    • 1
  1. 1.Faculty of ComputingUniversity of LatviaRigaLatvia

Personalised recommendations