Reliable Atrial Activity Extraction from ECG Atrial Fibrillation Signals

  • Felipe Donoso
  • Eduardo Lecannelier
  • Esteban Pino
  • Alejandro Rojas
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7042)

Abstract

Atrial fibrillation (AF) is the most common arrhythmia encountered in clinical research, with a prevalence of 0.4% to 1% of the population. Therefore, the study of AF is an important research field that can provide great treatment improvements. In this paper we apply independent component analysis to a 12-lead electrocardiogram, for which we obtain a 12-source set. We apply to this set three different atrial activity (AA) selection methods based on: kurtosis, correlation of the sources with lead V1, and spectral analysis. We then propose a reliable AA extraction based on the consensus between the three methods in order to reduce the effect of anatomical and physiological variabilities. The extracted AA signal will be used in a future stage for AF classification.

Keywords

atrial fibrillation atrial activity ECG ICA kurtosis correlation power spectral density 

References

  1. 1.
    Fuster, V., Rydén, L.E., Cannom, D.S., et al.: ACC/AHA/ESC 2006 Guidelines for the management of patients with atrial fibrillation. Europace 8(9), 651–745 (2006)CrossRefGoogle Scholar
  2. 2.
    Go, A.S., Hylek, E.M., Phillips, K.A., Chang, Y., Henault, L.E., Selby, J.V., Singer, D.E.: Prevalence of diagnosed atrial fibrillation in adults: national implications for rhythm management and stroke prevention: the anticoagulation and risk factors in atrial fibrillation (atria) study. Journal of the American Medical Association 285(18), 2370–2375 (2001)CrossRefGoogle Scholar
  3. 3.
    Stridh, M., Sornmo, L.: Spatiotemporal qrst cancellation techniques for analysis of atrial fibrillation. IEEE Transactions on Biomedical Engineering 48(1), 105–111 (2001)CrossRefGoogle Scholar
  4. 4.
    Rieta, J.J., Zarzoso, V., Millet-Roig, J., Garcia-Civera, R., Ruiz-Granell, R.: Atrial activity extraction based on blind source separation as an alternative to qrst cancellation for atrial fibrillation analysis. In: Proc. Computers in Cardiology 2000, pp. 69–72 (2000)Google Scholar
  5. 5.
    Langley, P., Bourke, J.P., Murray, A.: Frequency analysis of atrial fibrillation. In: Proc. Computers in Cardiology 2000. pp. 65–68 (2000)Google Scholar
  6. 6.
    Rieta, J.J., Castells, F., Sanchez, C., Zarzoso, V., Millet, J.: Atrial activity extraction for atrial fibrillation analysis using blind source separation. IEEE Transactions on Biomedical Engineering 51(7), 1176–1186 (2004)CrossRefGoogle Scholar
  7. 7.
    Phlypo, R., D’Asseler, Y., Lemahieu, I., Zarzoso, V.: Extraction of the atrial activity from the ecg based on independent component analysis with prior knowledge of the source kurtosis signs. In: Proc. 29th Annual Int. Conf. of the IEEE Engineering in Medicine and Biology Society EMBS 2007, pp. 6499–6502 (2007)Google Scholar
  8. 8.
    Xiao, J., Chen, Z., Huang, Z.: Atrial activity extraction for atrial fibrillation analysis using mutual information minimization. In: Proc. 1st Int. Conf. Bioinformatics and Biomedical Engineering ICBBE 2007, pp. 916–919 (2007)Google Scholar
  9. 9.
    Cardoso, J.F.: Source separation using higher order moments. In: Proc. Int. Acoustics, Speech, and Signal Processing ICASSP 1989. Conf., pp. 2109–2112 (1989)Google Scholar
  10. 10.
    Comon, P.: Independent component analysis, a new concept? Signal Processing 36, 287–314 (1994)CrossRefMATHGoogle Scholar
  11. 11.
    Hyvärinen, A., Karhunen, J., Oja, E.: Independent Component Analysis. John Wiley & Sons, Inc. (2001)Google Scholar
  12. 12.
    Bollmann, A., Husser, D., Mainardi, L., Lombardi, F., Langley, P., Murray, A., Rieta, J.J., Millet, J., Olsson, S.B., Stridh, M., Sörnmo, L.: Analysis of surface electrocardiograms in atrial fibrillation: techniques, research, and clinical applications. Europace 8(11), 911–926 (2006), http://dx.doi.org/10.1093/europace/eul113 CrossRefGoogle Scholar
  13. 13.
    Thurmann, M., Janney, J.G.: The diagnostic importance of fibrillatory wave size. Circulation 25, 991–994 (1962)CrossRefGoogle Scholar
  14. 14.
    Bollmann, A., Kanuru, N.K., McTeague, K.K., Walter, P.F., DeLurgio, D.B., Langberg, J.J.: Frequency analysis of human atrial fibrillation using the surface electrocardiogram and its response to ibutilide. American Journal of Cardiology 81(12), 1439–1445 (1998)CrossRefGoogle Scholar
  15. 15.
    Langley, P., Stridh, M., Rieta, J.J., Sornmo, L., Millet-Roig, J., Murray, A.: Comparison of atrial rhythm extraction techniques for the estimation of the main atrial frequency from the 12-lead electrocardiogram in atrial fibrillation. In: Proc. Computers in Cardiology, pp. 29–32 (2002)Google Scholar
  16. 16.
    Welch, P.: The use of fast fourier transform for the estimation of power spectra: A method based on time averaging over short, modified periodograms. IEEE Transactions on Audio and Electroacoustics 15(2), 70–73 (1967)CrossRefGoogle Scholar
  17. 17.
    Hyvärinen, A., Oja, E.: Independent component analysis: algorithms and applications. Neural Networks 13(4-5), 411–430 (2000)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Felipe Donoso
    • 1
  • Eduardo Lecannelier
    • 2
  • Esteban Pino
    • 1
  • Alejandro Rojas
    • 1
  1. 1.Department of Electrical EngineeringUniversity of ConcepcionConcepcionChile
  2. 2.Department of Internal MedicineUniversity of ConcepcionConcepcionChile

Personalised recommendations