Multimodal Schizophrenia Detection by Multiclassification Analysis

  • Aydın Ulaş
  • Umberto Castellani
  • Pasquale Mirtuono
  • Manuele Bicego
  • Vittorio Murino
  • Stefania Cerruti
  • Marcella Bellani
  • Manfredo Atzori
  • Gianluca Rambaldelli
  • Michele Tansella
  • Paolo Brambilla
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7042)

Abstract

We propose a multiclassification analysis to evaluate the relevance of different factors in schizophrenia detection. Several Magnetic Resonance Imaging (MRI) scans of brains are acquired from two sensors: morphological and diffusion MRI. Moreover, 14 Region Of Interests (ROIs) are available to focus the analysis on specific brain subparts. All information is combined to train three types of classifiers to distinguish between healthy and unhealthy subjects. Our contribution is threefold: (i) the classification accuracy improves when multiple factors are taken into account; (ii) proposed procedure allows the selection of a reduced subset of ROIs, and highlights the synergy between the two modalities; (iii) correlation analysis is performed for every ROI and modality to measure the information overlap using the correlation coefficient in the context of schizophrenia classification. We see that we achieve 85.96 % accuracy when we combine classifiers from both modalities, whereas the highest performance of a single modality is 78.95 %.

Keywords

Machine learning algorithms Magnetic resonance imaging Support vector machines Correlation 

References

  1. 1.
    Agarwal, N., Port, J.D., Bazzocchi, M., Renshaw, P.F.: Update on the use of MR for assessment and diagnosis of psychiatric diseases. Radiology 255(1), 23–41 (2010)CrossRefGoogle Scholar
  2. 2.
    Bellani, M., Brambilla, P.: The use and meaning of the continuous performance test in schizophrenia. Epidemiologia e Psichiatria Sociale 17(3), 188–191 (2008)CrossRefGoogle Scholar
  3. 3.
    Cheng, D.S., Bicego, M., Castellani, U., Cerruti, S., Bellani, M., Rambaldelli, G., Atzori, M., Brambilla, P., Murino, V.: Schizophrenia classification using regions of interest in brain mri. In: Proceedings of Intelligent Data Analysis in Biomedicine and Pharmacology, IDAMAP 2009, pp. 47–52 (2009)Google Scholar
  4. 4.
    Davatzikos, C.: Why voxel-based morphometric analysis should be used with great caution when characterizing group differences. NeuroImage 23(1), 17–20 (2004)CrossRefGoogle Scholar
  5. 5.
    Giuliani, N.R., Calhouna, V.D., Pearlson, G.D., Francis, A., Buchanan, R.W.: Voxel-based morphometry versus region of interest: a comparison of two methods for analyzing gray matter differences in schizophrenia. Schizophrenia Research 74(2-3), 135–147 (2005)CrossRefGoogle Scholar
  6. 6.
    Kuncheva, L.I.: Combining pattern classifiers: methods and algorithms. Wiley-Interscience (2004)Google Scholar
  7. 7.
    Kuncheva, L.I., Whitaker, C.J.: Measures of diversity in classifier ensembles and their relationship with the ensemble accuracy. Machine Learning 51(2), 181–207 (2003)CrossRefMATHGoogle Scholar
  8. 8.
    Petrakos, M., Kannelopoulos, I., Benediktsson, J.A., Pesaresi, M.: The effect of correlation on the accuracy of the combined classifier in decision level fusion. In: Proceedings of the IEEE International Geo-science and Remote Sensing Symposium, IGARSS 2000, vol. 6, pp. 2623–2625 (2000)Google Scholar
  9. 9.
    Rujescu, D., Collier, D.A.: Dissecting the many genetic faces of schizophrenia. Epidemiologia e Psichiatria Sociale 18(2), 91–95 (2009)Google Scholar
  10. 10.
    Ruta, D., Gabrys, B.: Classifier selection for majority voting. Information Fusion 6(1), 63–81 (2005)CrossRefMATHGoogle Scholar
  11. 11.
    Shenton, M.E., Dickey, C.C., Frumin, M., McCarley, R.W.: A review of mri findings in schizophrenia. Schizophrenia Research 49(1-2), 1–52 (2001)CrossRefGoogle Scholar
  12. 12.
    Ulaş, A., Semerci, M., Yıldız, O.T., Alpaydın, E.: Incremental construction of classifier and discriminant ensembles. Information Sciences 179(9), 1298–1318 (2009)CrossRefGoogle Scholar
  13. 13.
    Ulaş, A., Yıldız, O.T., Alpaydın, E.: Eigenclassifiers for combining correlated classifiers. Information Sciences (accepted, 2011)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Aydın Ulaş
    • 1
  • Umberto Castellani
    • 1
  • Pasquale Mirtuono
    • 1
  • Manuele Bicego
    • 1
    • 2
  • Vittorio Murino
    • 1
    • 2
  • Stefania Cerruti
    • 3
  • Marcella Bellani
    • 3
  • Manfredo Atzori
    • 4
  • Gianluca Rambaldelli
    • 3
  • Michele Tansella
    • 3
  • Paolo Brambilla
    • 4
    • 5
  1. 1.Department of Computer ScienceUniversity of VeronaVeronaItaly
  2. 2.Istituto Italiano di Tecnologia (IIT)GenovaItaly
  3. 3.Department of Public Health and Community Medicine, Section of Psychiatry and Clinical Psychology, Inter-University Centre for Behavioural NeurosciencesUniversity of VeronaVeronaItaly
  4. 4.IRCCS “E. Medea” Scientific InstituteUdineItaly
  5. 5.DISM, Inter-University Centre for Behavioural NeurosciencesUniversity of UdineUdineItaly

Personalised recommendations