A Multi-style License Plate Recognition System Based on Tree of Shapes for Character Segmentation

  • Francisco Gómez Fernández
  • Pablo Negri
  • Marta Mejail
  • Julio Jacobo
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7042)

Abstract

The aim of this work is to develop a multi-style license plate recognition (LPR) system. Most of the LPR systems are country-dependent and take advantage of it. Here, a new character extraction algorithm is proposed, based on the tree of shapes of the image. This method is well adapted to work with different styles of license plates, does not require skew or rotation correction and is parameterless. Also, it has invariance under changes in scale, contrast, or affine changes in illumination. We tested our LPR system on two different datasets and achieved high performance rates: above 90 % in license plate detection and character recognition steps, and up to 98.17 % in the character segmentation step.

Keywords

Support Vector Machine Character Recognition License Plate Segmentation Step Character Segmentation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Anagnostopoulos, C., Anagnostopoulos, I., Psoroulas, I., Loumos, V., Kayafas, E.: License plate recognition from still images and video sequences: A survey. IEEE Inteligent Transportation Systems 9(3), 377–391 (2008)CrossRefGoogle Scholar
  2. 2.
    Chang, C.C., Lin, C.J.: LIBSVM: a library for support vector machines (2001), software http://www.csie.ntu.edu.tw/~cjlin/libsvm
  3. 3.
    Dlagnekov, L., Belongie, S.: Ucsd/calit2 car license plate, make and model database (2005), http://vision.ucsd.edu/car_data.html
  4. 4.
    Donoser, M., Arth, C., Bischof, H.: Detecting, tracking and recognizing license plates. In: Yagi, Y., Kang, S.B., Kweon, I.S., Zha, H. (eds.) ACCV 2007, Part II. LNCS, vol. 4844, pp. 447–456. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  5. 5.
    Wong, E.K., Chen, M.: A new robust algorithm for video text extraction. Pattern Recognition 36, 1397–1406 (2003)CrossRefMATHGoogle Scholar
  6. 6.
    Jiao, J., Ye, Q., Huang, Q.: A configurable method for multi-style license plate recognition. Pattern Recognition 42(3), 358–369 (2009)CrossRefMATHGoogle Scholar
  7. 7.
    Matas, J., Chum, O., Martin, U., Pajdla, T.: Robust wide baseline stereo from maximally stable extremal regions. BMVC 1, 384–393 (2002)Google Scholar
  8. 8.
    Monasse, P.: Morphological representation of digital images and application to registration. Ph.D. thesis, Université Paris IX-Dauphine (June 2000)Google Scholar
  9. 9.
    Negri, P., Tepper, M., Acevedo, D., Jacobo, J., Mejail, M.: Multiple clues for license plate detection and recognition. In: Bloch, I., Cesar Jr., R.M. (eds.) CIARP 2010. LNCS, vol. 6419, pp. 269–276. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  10. 10.
    Shapiro, V., Gluhchev, G., Dimov, D.: Towards a multinational car license plate recognition system. MVA 17, 173–183 (2006)Google Scholar
  11. 11.
    Thome, N., Vacavant, A., Robinault, L., Miguet, S.: A cognitive and video-based approach for multinational license plate recognition. MVA 21 (2010)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Francisco Gómez Fernández
    • 1
  • Pablo Negri
    • 2
  • Marta Mejail
    • 1
  • Julio Jacobo
    • 1
  1. 1.Universidad de Buenos AiresArgentina
  2. 2.PLADEMAUniversidad Nacional del Centro de la Provincia de Buenos AiresArgentina

Personalised recommendations