Using Adaptive Run Length Smoothing Algorithm for Accurate Text Localization in Images

  • Martin Rais
  • Norberto A. Goussies
  • Marta Mejail
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7042)

Abstract

Text information in images and videos is frequently a key factor for information indexing and retrieval systems. However, text detection in images is a difficult task since it is often embedded in complex backgrounds. In this paper, we propose an accurate text detection and localization method in images based on stroke information and the Adaptive Run Lenght Smoothing Algorithm. Experimental results show that the proposed approach is accurate, has high recall and is robust to various text sizes, fonts, colors and languages.

Keywords

Support Vector Machine Text Line Text Region Text Detection Connected Component Analysis 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Anthimopoulos, M., Gatos, B., Pratikakis, I.: A two-stage scheme for text detection in video images. Image Vision Comput. 28, 1413–1426 (2010)CrossRefGoogle Scholar
  2. 2.
    Cortes, C., Vapnik, V.: Support-vector networks. Machine Learning 20(3), 273–297 (1995)MATHGoogle Scholar
  3. 3.
    Herv, D., Chen, D., Bourlard, H.: Text Identification in Complex Background Using SVM. In: Proc. of IEEE Conference on Computer Vision and Pattern Recognition, vol. 2, pp. 621–626 (2001)Google Scholar
  4. 4.
    Hua, X., Wenyin, L., Zhang, H.: An Automatic Performance Evaluation Protocol for Video Text Detection Algorithms. IEEE Transactions on Circuits and Systems for Video Technology 14, 498–507 (2004)CrossRefGoogle Scholar
  5. 5.
    Jung, K.: Text information extraction in images and video: a survey. Pattern Recognition 37(5), 977–997 (2004)CrossRefGoogle Scholar
  6. 6.
    Li, J.: A Wavelet Approach to Edge Detection. Master’s thesis, Sam Houston State University, Huntsville, Texas (August 2003)Google Scholar
  7. 7.
    Li, X., Wang, W., Jiang, S., Huang, Q., Gao, W.: Fast and Effective Text Detection. In: International Congress in Image Processing 2008 (2008)Google Scholar
  8. 8.
    Liu, Q., Jung, C., Kim, S., Moon, Y., Kim, J.: Stroke Filter for Text Localization in Video Images, pp. 1473–1476 (October 2006)Google Scholar
  9. 9.
    Lyu, M.R., Song, J., Cai, M.: A comprehensive method for multilingual video text detection, localization, and extraction. IEEE Transactions on Circuits and Systems for Video Technology 15(2), 243–255 (2005)CrossRefGoogle Scholar
  10. 10.
    Nikolaou, N., Makridis, M., Gatos, B., Stamatopoulos, N., Papamarkos, N.: Segmentation of historical machine-printed documents using Adaptive Run Length Smoothing and skeleton segmentation paths. Image Vision Comput. 28, 590–604 (2010)CrossRefGoogle Scholar
  11. 11.
    Shivakumara, P., Phan, T.Q., Tan, C.L.: A Gradient Difference Based Technique for Video Text Detection, pp. 156–160 (2009)Google Scholar
  12. 12.
    Ye, Q., Huang, Q., Gao, W., Zhao, D.: Fast and robust text detection in images and video frames. Image and Vision Computing 23(6), 565–576 (2005)CrossRefGoogle Scholar
  13. 13.
    Zhao, M., Li, S., Kwok, J.: Text detection in images using sparse representation with discriminative dictionaries. Image and Vision Computing 28(12), 1590–1599 (2010)CrossRefGoogle Scholar
  14. 14.
    Zhong, Y., Karu, K., Jain, A.K.: Locating text in complex color images. In: Proceedings of the Third International Conference on Document Analysis and Recognition, ICDAR 1995, vol. 1. IEEE Computer Society, Washington, DC, USA (1995)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Martin Rais
    • 1
  • Norberto A. Goussies
    • 1
  • Marta Mejail
    • 1
  1. 1.Departamento de Computación, Facultad de Ciencias Exactas y NaturalesUniversidad de Buenos AiresBuenos AiresArgentina

Personalised recommendations