A New Algorithm for Image Segmentation via Watershed Transformation

  • Maria Frucci
  • Gabriella Sanniti di Baja
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6979)

Abstract

A new segmentation method is presented. The watershed transformation is initially computed starting from all seeds detected as regional minima in the gradient image and a digging cost is associated to each pair of adjacent regions. Digging is performed for each pair of adjacent regions for which the cost is under a threshold, whose value is computed automatically, so originating a reduced set of seeds. Watershed transformation and digging are repeatedly applied, until no more seeds are filtered out. Then, region merging is accomplished, based on the size of adjacent regions.

References

  1. 1.
    Lucchese, L., Mitra, S.K.: Color image segmentation: A State-of-the-Art Survey. Proc. of the Indian National Science Academy (INSA-A) 67A(2), 207–221 (2001)Google Scholar
  2. 2.
    Cheng, H.D., Jiang, X.H., Sun, Y., Wang, J.: Color image segmentation: advances and prospects. Pattern Recognition 34, 2259–2281 (2001)CrossRefMATHGoogle Scholar
  3. 3.
    Freixenet, J., Muñoz, X., Raba, D., Martí, J., Cufí, X.: Yet Another Survey on Image Segmentation: Region and Boundary Information Integration. In: Heyden, A., Sparr, G., Nielsen, M., Johansen, P. (eds.) ECCV 2002. LNCS, vol. 2352, pp. 408–422. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  4. 4.
    Sezgin, M., Sankur, B.: Survey over image thresholding techniques and quantitative performance evaluation. Electronic Imaging 13(1), 146–165 (2004)CrossRefGoogle Scholar
  5. 5.
    Wirjadi, O.: Image and video matting: a survey. Fraunhofer Institut für Techno und Wirtschaftsmathematik ITWM 2007, ISSN 1434-9973 Bericht 123 (2007)Google Scholar
  6. 6.
    Zhang, H., Fritts, J.E., Goldman, S.A.: Image segmentation evaluation: A survey of unsupervised methods. In: CVIU, vol. 110, pp. 260–280 (2008)Google Scholar
  7. 7.
    Shamir, A.: A survey on mesh segmentation techniques. Computer Graphics Forum 27(6), 1539–1556 (2008)CrossRefMATHGoogle Scholar
  8. 8.
    Senthilkumaran, N., Rajesh, R.: Edge detection techniques for image segmentation: a survey of Soft Computing Approaches. Int. J. Recent Trends in Engineering 1(2), 250–254 (2009)Google Scholar
  9. 9.
    Yang, Z., Chung, F.-L., Shitong, W.: Robust fuzzy clustering-based image segmentation. Applied Soft Computing 9, 80–84 (2009)CrossRefGoogle Scholar
  10. 10.
    Beucher, S., Lantuéjoul, C.: Use of watersheds in contour detection. In: Proc. Int. Workshop on Image Processing, Real-time Edge and Motion Detection/Estimation, Rennes, France, pp. 12–21 (1979)Google Scholar
  11. 11.
    Vincent, L., Soille, P.: Watersheds in digital spaces: an efficient algorithm based on immersion simulations. IEEE Trans. PAMI 13(6), 583–598 (1991)CrossRefGoogle Scholar
  12. 12.
    Roerdink, J.B.T.M., Meijster, A.: The watershed transform: definitions, algorithms and parallelization strategies. Fundamenta Informaticae 41, 187–228 (2001)MathSciNetMATHGoogle Scholar
  13. 13.
    Frucci, M.: Oversegmentation reduction by flooding regions and digging watershed lines. IJPRAI 20(1), 15–38 (2006)Google Scholar
  14. 14.
    Frucci, M., Perner, P., Sanniti di Baja, G.: Case-based reasoning for image segmentation by watershed transformation. In: Case-based Reasoning on Images and Signals, vol. 73, pp. 319–352. Springer, Berlin (2007)CrossRefGoogle Scholar
  15. 15.
    Soille, P., Vogt, P.: Morphological segmentation of binary patterns. Pattern Recognition Letters 30(4), 456–459 (2009)CrossRefGoogle Scholar
  16. 16.
    Maulik, U.: Medical image segmentation using genetic algorithms. IEEE Trans. Information Technology in Biomedicine 13(2), 166–173 (2009)CrossRefGoogle Scholar
  17. 17.

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Maria Frucci
    • 1
  • Gabriella Sanniti di Baja
    • 1
  1. 1.Institute of Cybernetics “E. Caianiello”, CNRPozzuoliItaly

Personalised recommendations