Computing Morse Decompositions for Triangulated Terrains: An Analysis and an Experimental Evaluation

  • Maria Vitali
  • Leila De Floriani
  • Paola Magillo
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6978)

Abstract

We consider the problem of extracting the morphology of a terrain discretized as a triangle mesh. We discuss first how to transpose Morse theory to the discrete case in order to describe the morphology of triangulated terrains. We review algorithms for computing Morse decompositions, that we have adapted and implemented for triangulated terrains. We compare the the Morse decompositions produced by them, by considering two different metrics.

Keywords

Morse Theory Morse Function Rand Index Integral Line Triangle Mesh 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Reuter, J.A.H., Nelson, A., Guevara, E.: Hole-filled seamless srtm data v4, international centre for tropical agriculture, ciat (2008), http://srtm.csi.cgiar.org
  2. 2.
    AIM@SHAPE. Shape Repository (2006), http://shapes.aimatshape.net
  3. 3.
    Bajaj, C.L., Shikore, D.R.: Topology preserving data simplification with error bounds. Computers and Graphics 22(1), 3–12 (1998)CrossRefGoogle Scholar
  4. 4.
    Banchoff, T.: Critical points and curvature for embedded polyhedral surfaces. American Mathematical Monthly 77(5), 475–485 (1970)MathSciNetCrossRefMATHGoogle Scholar
  5. 5.
    Beucher, S., Lantuejoul, C.: Use of watersheds in contour detection. In: Int. Workshop on Image Processing: Real-Time Edge and Motion Detection/Estimation (1979)Google Scholar
  6. 6.
    Biasotti, S., De Floriani, L., Falcidieno, B., Frosini, P., Giorgi, D., Landi, C., Papaleo, L., Spagnuolo, M.: Describing shapes by geometrical-topological properties of real functions. ACM Computing Surveys 40(4), 1–87 (2008)CrossRefGoogle Scholar
  7. 7.
    Bieniek, A., Moga, A.: A connected component approach to the watershed segmentation. In: Mathematical Morphology and its Application to Image and Signal Processing, pp. 215–222. Kluwer Acad. Publ., Dordrecht (1998)Google Scholar
  8. 8.
    Bremer, P.-T., Edelsbrunner, H., Hamann, B., Pascucci, V.: A topological hierarchy for functions on triangulated surfaces. IEEE Transactions on Visualization and Computer Graphics 10(4), 385–396 (2004)CrossRefGoogle Scholar
  9. 9.
    Cazals, F., Chazal, F., Lewiner, T.: Molecular shape analysis based upon the Morse-Smale complex and the connolly function. In: SCG 2003: Proc. 19th annual symposium on Computational geometry, pp. 351–360. ACM Press, New York (2003)Google Scholar
  10. 10.
    Chen, X., Golovinskiy, A., Funkhouser, T.: A benchmark for 3D mesh segmentation. ACM Transactions on Graphics (Proc. SIGGRAPH) 28(3) (2009)Google Scholar
  11. 11.
    Danovaro, E., De Floriani, L., Magillo, P., Mesmoudi, M.M., Puppo, E.: Morphology-driven simplification and multi-resolution modeling of terrains. In: Proc. 11th ACMGIS, pp. 63–70. ACM Press, New York (2003)Google Scholar
  12. 12.
    Danovaro, E., De Floriani, L., Mesmoudi, M.M.: Topological analysis and characterization of discrete scalar fields. In: Asano, T., Klette, R., Ronse, C. (eds.) Geometry, Morphology, and Computational Imaging. LNCS, vol. 2616, pp. 386–402. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  13. 13.
    Danovaro, E., De Floriani, L., Vitali, M., Magillo, P.: Multi-scale dual Morse complexes for representing terrain morphology. In: Proc. 15th ACMGIS. ACM Press, New York (2007)Google Scholar
  14. 14.
    Danovaro, E., Floriani, L.D., Magillo, P., Vitali, M.: Multiresolution Morse triangulations. In: Proc. Symposium of Solid and Physical Modeling (2010)Google Scholar
  15. 15.
    De Floriani, L., Magillo, P., Vitali, M.: Modeling and generalization of discrete Morse terrain decompositions. In: Proc. 20th Int. Conf. on Pattern Recognition, ICPR 2010, pp. 999–1002. IEEE Computer Society, Los Alamitos (2010)CrossRefGoogle Scholar
  16. 16.
    Edelsbrunner, H., Harer, J., Natarajan, V., Pascucci, V.: Morse-Smale complexes for piecewise linear 3-manifolds. In: Proc. 19th ACM Symposium on Computational Geometry, pp. 361–370 (2003)Google Scholar
  17. 17.
    Edelsbrunner, H., Harer, J., Zomorodian, A.: Hierarchical Morse complexes for piecewise linear 2-manifolds. In: Proc. 17th ACM Symposium on Computational Geometry, pp. 70–79. ACM Press, New York (2001)Google Scholar
  18. 18.
    Forman, R.: Morse theory for cell complexes. Adv. in Math. 134, 90–145 (1998)MathSciNetCrossRefMATHGoogle Scholar
  19. 19.
    Huang, Q., Dom, B.: Quantitative methods of evaluating image segmentation. In: ICIP 1995: Proc. Int. Conf. on Image Processing, vol. 3, p. 3053. IEEE Computer Society, Washington, DC, USA (1995)Google Scholar
  20. 20.
    Magillo, P., Danovaro, E., De Floriani, L., Papaleo, L., Vitali, M.: A discrete approach to compute terrain morphology. Computer Vision and Computer Graphics. Theory and Applications 21, 13–26 (2009)CrossRefMATHGoogle Scholar
  21. 21.
    Meijster, A., Roerdink, J.: Computation of watersheds based on parallel graph algorithms. In: Mathematical Morphology and its Application to Image Segmentation, pp. 305–312. Kluwer, Dordrecht (1996)Google Scholar
  22. 22.
    Mesmoudi, M., Danovaro, E., De Floriani, L., Port, U.: Surface segmentation through concentrated curvature. In: Proc. ICIAP, pp. 671–676 (2007)Google Scholar
  23. 23.
    Mesmoudi, M., Floriani, L.D., Magillo, P.: Discrete distortion for surface meshes. In: Proc. ICIAP (2009)Google Scholar
  24. 24.
    Mesmoudi, M., Floriani, L.D., Magillo, P.: A geometric approach to curvature estimation on triangulated 3D shapes. In: Int. Conf. on Computer Graphics Theory and Applications (GRAPP), pp. 90–95 (2010)Google Scholar
  25. 25.
    Meyer, F.: Topographic distance and watershed lines. Signal Processing 38, 113–125 (1994)CrossRefMATHGoogle Scholar
  26. 26.
    Milnor, J.: Morse Theory. Princeton University Press, Princeton (1963)MATHGoogle Scholar
  27. 27.
    Pascucci, V.: Topology diagrams of scalar fields in scientific visualization. In: Topological Data Structures for Surfaces, pp. 121–129. John Wiley and Sons Ltd, Chichester (2004)Google Scholar
  28. 28.
    Rand, W.: Objective criteria for the evaluation of clusterings methods. Journal of the American Statistical Association 66(336), 846–850 (1971)CrossRefGoogle Scholar
  29. 29.
    Roerdink, J., Meijster, A.: The watershed transform: definitions, algorithms, and parallelization strategies. Fundamenta Informaticae 41, 187–228 (2000)MathSciNetMATHGoogle Scholar
  30. 30.
    Stoev, S.L., Strasser, W.: Extracting regions of interest applying a local watershed transformation. In: Proc. IEEE Visualization 2000, pp. 21–28. IEEE Computer Society, Los Alamitos (2000)Google Scholar
  31. 31.
    Takahashi, S., Ikeda, T., Kunii, T.L., Ueda, M.: Algorithms for extracting correct critical points and constructing topological graphs from discrete geographic elevation data. Computer Graphics Forum 14(3), 181–192 (1995)CrossRefGoogle Scholar
  32. 32.
    Vincent, L., Soile, P.: Watershed in digital spaces: an efficient algorithm based on immersion simulation. IEEE Transactions on Pattern Analysis and Machine Intelligence 13(6), 583–598 (1991)CrossRefGoogle Scholar
  33. 33.
    Vitali, M.: Morse Decomposition of Geometric Meshes with Applications. PhD thesis, Computer Science Dept., University of Genova, Italy (2010)Google Scholar
  34. 34.
    Weiss, K., De Floriani, L.: Sparse terrain pyramids. In: Proc. ACM SIGSPATIAL GIS, pp. 115–124. ACM Press, New York (2008)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Maria Vitali
    • 1
  • Leila De Floriani
    • 1
  • Paola Magillo
    • 1
  1. 1.University of GenovaItaly

Personalised recommendations