Optimal Choice of Regularization Parameter in Image Denoising

  • Mirko Lucchese
  • Iuri Frosio
  • N. Alberto Borghese
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6978)

Abstract

The Bayesian approach applied to image denoising gives rise to a regularization problem. Total variation regularizers have been introduced with the motivation of being edge preserving. However we show here that this may not always be the best choice in images with low/medium frequency content like digital radiographs. We also draw the attention on the metric used to evaluate the distance between two images and how this can influence the choice of the regularization parameter. Lastly, we show that hyper-surface regularization parameter has little effect on the filtering quality.

Keywords

Denoising Total Variation Regularization Bayesian Filtering Digital Radiography 

References

  1. 1.
    Snyder, D.L., Hammoud, A.M., White, R.L.: Image recovery from data acquired with a charge coupled device camera. J. Opt. Soc. Am. A 10, 1014–1023 (1993)CrossRefGoogle Scholar
  2. 2.
    Frosio, I., Borghese, N.A.: Statistical Based Impulsive Noise Removal in Digital Radiography. IEEE Trans. on Med. Imag. 28(1), 3–16 (2009)CrossRefGoogle Scholar
  3. 3.
    Zanella, R., Boccacci, P., Zanni, L., Bertero, M.: Efficient Gradient Projection methods for edge-preserving removal of Poisson noise. Inverse Problems 25(4), 045010 (2009)MathSciNetCrossRefMATHGoogle Scholar
  4. 4.
    Bonettini, S., Zanni, L., Zanella, R.: A scaled gradient projection method for constrained image deblurring. Inverse Problems 25(1), 015002 (2009)MathSciNetCrossRefMATHGoogle Scholar
  5. 5.
    Bertero, M., Lanteri, H., Zanni, L.: Iterative image reconstruction: a point of view. In: Proc. IMRT (2008)Google Scholar
  6. 6.
    Tikhonov, A.N., Arsenin, V.Y.: Solutions of Ill-posed Problems. W. H. Winston (1977)Google Scholar
  7. 7.
    Rudin, L., Osher, S., Fatemi, E.: Nonlinear Total Variation based noise removal algorithms. Physica D 60, 259–268 (1992)MathSciNetCrossRefMATHGoogle Scholar
  8. 8.
    Carbonetto, P., Schmidt, M., de Freitas, N.: An interior-point stochastic approximation method and an L1-regularized delta rule. In: Proc. NIPS 2008, pp. 112–119 (2008)Google Scholar
  9. 9.
    Bertero, M., Boccacci, P., Talenti, G., Zanella, R., Zanni, L.: A discrepancy principle for Poisson data. Inverse Problems 26(10), 105004 (2010)MathSciNetCrossRefMATHGoogle Scholar
  10. 10.
    Lucchese, M., Borghese, N.A.: Denoising of Digital Radiographic Images with Automatic Regularization Based on Total Variation. In: Proc. ICIAP, pp. 711–720 (2009)Google Scholar
  11. 11.
    Geman, S., Geman, D.: Stochastic Relaxation, Gibbs Distributions, and the Bayesian Restoration of Images. IEEE Trans. PAMI 6, 721–741 (1984)CrossRefMATHGoogle Scholar
  12. 12.
    Wang, Z., Bovick, A.C., Sheikh, H.R., Simoncelli, E.P.: Image Quality Assessment: From Error Visibility to Structural Similarity. IEEE Tran. Image Proc. 13(4), 600–612 (2004)CrossRefGoogle Scholar
  13. 13.
    Zhang, L., Zhang, L., Mou, X., Zhang, D.: FSIM: A Feature Similarity Index for Image Quality Assessment. IEEE Tran. Image Proc. (in press)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Mirko Lucchese
    • 1
  • Iuri Frosio
    • 1
  • N. Alberto Borghese
    • 1
  1. 1.Applied Intelligent System Laboratory, Computer Science Dept.University of MilanMilanItaly

Personalised recommendations