Nano-imaging and Its Applications to Biomedicine

  • Elisabetta Canetta
  • Ashok K. Adya
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6978)

Abstract

Nanotechnology tools, such as Atomic Force Microscopy (AFM), are now becoming widely used in life sciences and biomedicine. AFM is a versatile technique that allows studying at the nanoscale the morphological, dynamic, and mechanical properties of biological samples, such as living cells, biomolecules, and tissues in their native state under physiological conditions. In this article, an overview of the principles of AFM will be first presented and this will be followed by discussion of some of our own recent work on the applications of AFM imaging to biomedicine.

Keywords

Atomic Force Microscopy AFM AFM imaging elastic images elastic modulus biomedicine cells yeasts biomolecules 

References

  1. 1.
    Binning, G., Quate, C.F., Gerber, C.: Atomic Force Microscope. Phys. Rev. Lett. 56, 930–933 (1986)CrossRefGoogle Scholar
  2. 2.
    Ikai, A.: A Review on: Atomic Force Microscopy applied to Nano-Mechanics of the Cell. Adv. Biochem. Eng. Biotechnol. 119, 47–61 (2010)Google Scholar
  3. 3.
    Canetta, E., Adya, A.K.: Atomic Force Microscopy: Applications to Nanobiotechnology. J. Indian Chem. Soc. 82, 1147–1172 (2005)Google Scholar
  4. 4.
    Francis, L.W., Lewis, P.D., Wright, C.J., Conlan, R.S.: Atomic Force Microscopy comes of age. Biol. Cell, 133–143 (2010)Google Scholar
  5. 5.
    Fletcher, D.A., Mullins, R.D.: Cell Mechanics and Cytoskeleton. Nature 463, 485–492 (2010)CrossRefGoogle Scholar
  6. 6.
    Haga, H., Sasaki, S., Kawabata, K., Ito, E., Ushiki, T., Sambongi, T.: Elasticity Mapping of Living Fibroblasts by AFM and Immunofluorescence Observation of the Cytoskeleton. Ultramicroscopy 82, 253–258 (2000)CrossRefGoogle Scholar
  7. 7.
    Jung, Y.J., Park, Y.S., Yoon, K.J., Kong, Y.Y., Park, J.W., Nam, H.G.: Molecule-Level Imaging of Pax6 mRNA Distribution in Mouse Embryonic Neocortex by Molecular Interaction Force Microscopy. Nucl. Acids Res. 37, e10 (2009)CrossRefGoogle Scholar
  8. 8.
    Schiffmann, K., Fryda, M., Goerigk, G., Lauer, R., Hinze, P.: Correction of STM Tip Convolution Effects in Particle Size and Distance Determination of Metal-C:H Films. Fresenius J. Anal. Chem. 358, 341–344 (1997)CrossRefGoogle Scholar
  9. 9.
    Canetta, E., Walker, G.M., Adya, A.: Nanoscopic Morphological Changes in Yeast Cell Surfaces Caused by Oxidative Stress: An Atomic Force Microscopic Study. J. Microbiol. Biotechn. 19, 547–555 (2009)Google Scholar
  10. 10.
    Krysmann, M.J., Funari, S., Canetta, E., Hamley, I.W.: The Effect of PEG Crystallization on the Morphology of PEG-peptide Block Copolymers Containing Amyloid β Peptide Fragments. Macromol. Chem. Physic. 209, 883–889 (2008)CrossRefGoogle Scholar
  11. 11.
    Canetta, E., Duperray, A., Leyrat, A., Verdier, C.: Measuring Cell Viscoelastic Properties Using a Force-Spectrometer: Influence of Protein Cytoplasm Interactions. Biorheology 42, 321–333 (2005)Google Scholar
  12. 12.
    Carberry, D.M., Picco, L., Dunton, P.G., Miles, M.J.: Mappifn Real-Time Images of High-Speed AFM Using Multitouch Control. Nanotechnology 20, 434018–434023 (2009)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Elisabetta Canetta
    • 1
  • Ashok K. Adya
    • 2
  1. 1.School of Biomedical SciencesCardiff UniversityCardiffUK
  2. 2.Division of Biotechnology and Forensic SciencesUniversity of Abertay DundeeDundeeScotland, UK

Personalised recommendations