A Multiple Kernel Learning Algorithm for Cell Nucleus Classification of Renal Cell Carcinoma
Conference paper
Abstract
We consider a Multiple Kernel Learning (MKL) framework for nuclei classification in tissue microarray images of renal cell carcinoma. Several features are extracted from the automatically segmented nuclei and MKL is applied for classification. We compare our results with an incremental version of MKL, support vector machines with single kernel (SVM) and voting. We demonstrate that MKL inherently combines information from different input spaces and creates statistically significantly more accurate classifiers than SVMs and voting for renal cell carcinoma detection.
Keywords
MKL renal cell carcinoma SVM Download
to read the full conference paper text
References
- 1.Bach, F.R., Lanckriet, G.R.G., Jordan, M.I.: Multiple kernel learning, conic duality, and the smo algorithm. In: Proceedings of the Twenty-First International Conference on Machine Learning, ICML 2004, Banff, Alberta, Canada, pp. 41–48 (2004)Google Scholar
- 2.Bosch, A., Zisserman, A., Munoz, X.: Representing shape with a spatial pyramid kernel. In: CIVR 2007: Proceedings of the 6th ACM International Conference on Image and Video Retrieval, pp. 401–408. ACM, New York (2007)Google Scholar
- 3.Boykov, Y., Veksler, O., Zabih, R.: Efficient approximate energy minimization via graph cuts. IEEE Transactions on Pattern Analysis and Machine Intelligence 20(12), 1222–1239 (2001)CrossRefGoogle Scholar
- 4.Fuchs, T.J., Wild, P.J., Moch, H., Buhmann, J.M.: Computational pathology analysis of tissue microarrays predicts survival of renal clear cell carcinoma patients. In: Metaxas, D., Axel, L., Fichtinger, G., Székely, G. (eds.) MICCAI 2008, Part II. LNCS, vol. 5242, pp. 1–8. Springer, Heidelberg (2008)CrossRefGoogle Scholar
- 5.Gönen, M., Alpaydın, E.: Localized multiple kernel learning. In: Proceedings of the International Conference on Machine Learning, ICML 2008, pp. 352–359 (2008)Google Scholar
- 6.Gonzalez, R.C., Woods, R.E., Eddins, S.L.: Digital image processing using matlab, 993475 (2003)Google Scholar
- 7.Kononen, J., Bubendorf, L., et al.: Tissue microarrays for high-throughput molecular profiling of tumor specimens. Nat. Med. 4(7), 844–847 (1998)CrossRefGoogle Scholar
- 8.Kuncheva, L.I.: Combining pattern classifiers: methods and algorithms. Wiley Interscience, Hoboken (2004)CrossRefMATHGoogle Scholar
- 9.Lanckriet, G.R.G., Cristianini, N., Bartlett, P., Ghaoui, L.E., Jordan, M.I.: Learning the kernel matrix with semidefinite programming. Journal of Machine Learning Research 5, 27–72 (2004)MathSciNetMATHGoogle Scholar
- 10.Lee, W.-J., Verzakov, S., Duin, R.P.W.: Kernel combination versus classifier combination. In: Haindl, M., Kittler, J., Roli, F. (eds.) MCS 2007. LNCS, vol. 4472, pp. 22–31. Springer, Heidelberg (2007)CrossRefGoogle Scholar
- 11.Moguerza, J.M., Muñoz, A., de Diego, I.M.n.: Improving support vector classification via the combination of multiple sources of information. In: Fred, A., Caelli, T.M., Duin, R.P.W., Campilho, A.C., de Ridder, D. (eds.) SSPR&SPR 2004. LNCS, vol. 3138, pp. 592–600. Springer, Heidelberg (2004)CrossRefGoogle Scholar
- 12.Ruta, D., Gabrys, B.: Classifier selection for majority voting. Information Fusion 6(1), 63–81 (2005)CrossRefMATHGoogle Scholar
- 13.Schüffler, P.J., Fuchs, T.J., Ong, C.S., Roth, V., Buhmann, J.M.: Computational TMA analysis and cell nucleus classification of renal cell carcinoma. In: Goesele, M., Roth, S., Kuijper, A., Schiele, B., Schindler, K. (eds.) Pattern Recognition. LNCS, vol. 6376, pp. 202–211. Springer, Heidelberg (2010)CrossRefGoogle Scholar
- 14.Ulaş, A., Semerci, M., Yıldız, O.T., Alpaydın, E.: Incremental construction of classifier and discriminant ensembles. Information Sciences 179(9), 1298–1318 (2009)CrossRefGoogle Scholar
- 15.Vapnik, V.N.: Statistical learning theory. John Wiley and Sons, Chichester (1998)MATHGoogle Scholar
Copyright information
© Springer-Verlag Berlin Heidelberg 2011