A Novel Probabilistic Linear Subspace Approach for Face Applications

  • Ying Ying
  • Han Wang
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6978)

Abstract

Over the past several decades, pattern classification based on subspace methodology is one of the most attractive research topics in the field of computer vision. In this paper, a novel probabilistic linear subspace approach is proposed, which utilizes hybrid way to capture multi-dimensional data extracting maximum discriminative information and circumventing small eigenvalues by minimizing statistical dependence between components. During features extraction process, local region is emphasized for crucial patterns representation, and also statistic technique is used to regularize these unreliable information for both reducing computational cost and maintaining accuracy purposes. Our approach is validated with a high degree of accuracy with various face applications using challenging databases containing different variations.

Keywords

probabilistic analysis linear subspace face application 

References

  1. 1.
    Wright, J., Yang, A.Y., Ganesh, A., Sastry, S.S., Ma, Y.: Robust Face Recognition Via Sparse Representation. TPAMI 31, 210–227 (2009)CrossRefGoogle Scholar
  2. 2.
    Vidal, R., Ma, Y., Sastry, S.: Generalized Principal Component Analysis (GPCA). TPAMI 27, 1945–1959 (2005)CrossRefGoogle Scholar
  3. 3.
    Belkin, M., Niyogi, P.: Laplacian Eigenmaps for Dimensionality Reduction and Data Representation. Neural Computation 15, 1373–1396 (2003)CrossRefMATHGoogle Scholar
  4. 4.
    He, X., Yan, S., Hu, Y., Niyogi, P., Zhang, H.J.: Face Recognition Using Faces. TPAMI 27, 328–340 (2005)CrossRefGoogle Scholar
  5. 5.
    Yan, S., Xu, D., Zhang, B., Yang, Q., Zhang, H., Liu, S.: Graph Embedding and Extensions: A General Framework for Dimensionality Reduction. TPAMI 29, 40–51 (2007)CrossRefGoogle Scholar
  6. 6.
    Jiang, X.D.: Linear Subspace Learning-Based Dimensionality Reduction. Signal Processing Magazine 28, 16 (2011)CrossRefGoogle Scholar
  7. 7.
    Moghaddam, B.: Principal Manifolds and Probabilistic Subspace for Visual Recognition. TPAMI 24, 780–788 (2002)CrossRefGoogle Scholar
  8. 8.
    Jiang, X.D., Mandal, B., Kot, A.C.: Enhanced Maximum Likelihood Face Recognition. Electronic Letter 42, 1089–1090 (2006)CrossRefGoogle Scholar
  9. 9.
    Bartlett, M.S., Movellan, J.R., Sejnowski, T.J.: Face Recognition by Independent Component Analysis. Neural Networks 13, 1450–1464 (2002)CrossRefGoogle Scholar
  10. 10.
    Kim, T.K., Kim, H., Hwang, W., Kittler, J.: Independent Component Analysis in a Local Facial Residue Space for Face Recognition. Pattern Recognition 37, 1873–1885 (2004)CrossRefGoogle Scholar
  11. 11.
    Schneiderman, H., Kanade, T.: A Statistical Method for 3D Object Detection Applied to Faces and Cars. In: IEEE International Conference on Computer Vision and Pattern Recognition, pp. 746–751 (2000)Google Scholar
  12. 12.
    Heisele, B., Serre, T., Poggio, T.: A Component-Based Framework for Face Detection and Identification. IJCV 74, 167–181 (2007)CrossRefGoogle Scholar
  13. 13.
    Ying, Y., Wang, H., Xu, J.: An Automatic System for Multi-View Face Detection and Pose Estimation. In: IEEE Internation Conference on Control, Automation, Robotics and Vision, pp. 1101–1108 (2010)Google Scholar
  14. 14.
    Black, J., Gargesha, M., Kahol, K., Kuchi, P., Panchanathan, S.: A Framework for Performance Evaluation of Face Recognition Algorithms. In: Internet Multimedia Systems II ITCOM (2002)Google Scholar
  15. 15.
    Little, G., Krishna, S., Black, J., Panchanathan, S.: A Methodology for Evaluating Robustness of Face Recognition Algorithms with Respect to Changes in Pose and Illumination Angle. In: ICASSP (2005)Google Scholar
  16. 16.
    Gourier, N., Hall, D., Crowley, J.L.: Estimating Face Orientation from Robust Detection of Salient Facial Features. In: International Workshop on Visual Observation of Deictic Gestures (2004)Google Scholar
  17. 17.
    Jones, M., Viola, P.: Fast Mulit-View Face Detection. Technical Report TR2003-96, Mitsubishi Electric Research Labs (2004)Google Scholar
  18. 18.
    Wu, B., Ai, H.Z., Huang, C., Lao, S.H.: Fast Rotation Invariant Multi-View Face Detection Based on Real Adaboost. In: IEEE 6th International Conference on Automatic Face and Gesture Recognition, pp. 79–84 (2004)Google Scholar
  19. 19.
    Martinez, A.M., Benavente, R.: The AR face database. CVC Tech. Report #24 (1998)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Ying Ying
    • 1
  • Han Wang
    • 1
  1. 1.School of Electrical and Electronic EngineeringNanyang Technological UniversitySingapore

Personalised recommendations