A Graph-Based Framework for Thermal Faceprint Characterization

  • Daniel Osaku
  • Aparecido Nilceu Marana
  • João Paulo Papa
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6978)

Abstract

Thermal faceprint has been paramount in the last years. Since we can handle with face recognition using images acquired in the infrared spectrum, an unique individual’s signature can be obtained through the blood vessels network of the face. In this work, we propose a novel framework for thermal faceprint extraction using a collection of graph-based techniques, which were never used to this task up to date. A robust method of thermal face segmentation is also presented. The experiments, which were conducted over the UND Collection C dataset, have showed promising results.

Keywords

Faceprint Image Foresting Transform Optimum-Path Forest Thermal Face Recognition 

References

  1. 1.
    Akhloufi, M., Bendada, A.: Infrared face recognition using distance transforms. In: Proceedings of the World Academy of Science, Engineering and Technology, vol. 30, pp. 160–163 (2008)Google Scholar
  2. 2.
    Andaló, F.A., Miranda, P.A.V., Torres, R.d.S., Falcão, A.X.: Shape feature extraction and description based on tensor scale. Pattern Recognition 43(1), 26–36 (2010)CrossRefMATHGoogle Scholar
  3. 3.
    Buddharaju, P., Pavlidis, I.T.: Physiological face recognition is coming of age. In: Proceedings of the Conference on Computer Vision and Pattern Recognition, pp. 128–135. IEEE Computer Society, Los Alamitos (2009)Google Scholar
  4. 4.
    Buddharaju, P., Pavlidis, I.T., Kakadiaris, I.A.: Face recognition in the thermal infrared spectrum. In: Proceedings of the Conference on Computer Vision and Pattern Recognition Workshop, vol. 8, pp. 167–191 (2004)Google Scholar
  5. 5.
    Buddharaju, P., Pavlidis, I.T., Tsiamyrtzis, P., Bazakos, M.: Physiology-based face recognition in the thermal infrared spectrum. IEEE Transactions on Pattern Analysis and Machine Intelligence 29(4), 613–626 (2007)CrossRefGoogle Scholar
  6. 6.
    Chen, X., Flynn, P.J., Bowyer, K.W.: Ir and visible light face recognition. Computer Vision and Image Understanding 99(3), 332–358 (2005)CrossRefGoogle Scholar
  7. 7.
    Chen, X., Flynn, P.J., Bowyer, K.W.: Ir and visible light face recognition. Computer Vision and Image Understanding 99(3), 332–358 (2005)CrossRefGoogle Scholar
  8. 8.
    Falcão, A.X., da Costa, L.F., Cunha, B.S.: Multiscale skeletons by image foresting transform and its application to neuromorphometry. Pattern Recognition 35(7), 1571–1582 (2002)CrossRefMATHGoogle Scholar
  9. 9.
    Falcão, A.X., Stolfi, J., Lotufo, R.A.: The image foresting transform: Theory, algorithms, and applications. IEEE Transactions on Pattern Analysis and Machine Intelligence 26(1), 19–29 (2004)CrossRefGoogle Scholar
  10. 10.
    Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man and Cybernetics 9(1), 62–66 (1979)CrossRefGoogle Scholar
  11. 11.
    Rocha, L.M., Cappabianco, F.A.M., Falcão, A.X.: Data clustering as an optimum-path forest problem with applications in image analysis. International Journal of Imaging Systems and Technology 19(2), 50–68 (2009)CrossRefGoogle Scholar
  12. 12.
    Vincent, L., Soille, P.: Watersheds in digital spaces: An efficient algorithm based on immersion simulations. IEEE Transactions on Pattern Analysis and Machine Intelligence 13(6), 583–598 (1991)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Daniel Osaku
    • 1
  • Aparecido Nilceu Marana
    • 1
  • João Paulo Papa
    • 1
  1. 1.Department of ComputingSão Paulo State University - UnespBauruBrazil

Personalised recommendations