Dissimilarity Representation in Multi-feature Spaces for Image Retrieval

  • Luca Piras
  • Giorgio Giacinto
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6978)

Abstract

In this paper we propose a novel approach to combine information form multiple high-dimensional feature spaces, which allows reducing the computational time required for image retrieval tasks. Each image is represented in a “(dis)similarity space”, where each component is computed in one of the low-level feature spaces as the (dis)similarity of the image from one reference image. This new representation allows the distances between images belonging to the same class being smaller than in the original feature spaces. In addition, it allows computing similarities between images by taking into account multiple characteristics of the images, and thus obtaining more accurate retrieval results. Reported results show that the proposed technique allows attaining good performances not only in terms of precision and recall, but also in terms of the execution time, if compared to techniques that combine retrieval results from different feature spaces.

Keywords

Feature Space Image Retrieval Relevance Feedback Relevance Score Relevant Image 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Information technology - Multimedia content description interface - Part 3: Visual, ISO/IEC Std. 15938-3:2003 (2003)Google Scholar
  2. 2.
    Bruno, E., Moenne-Loccoz, N., Marchand-Maillet, S.: Learning user queries in multimodal dissimilarity spaces. In: Detyniecki, M., Jose, J.M., Nürnberger, A., van Rijsbergen, C.J. (eds.) AMR 2005. LNCS, vol. 3877, pp. 168–179. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  3. 3.
    Chatzichristofis, S.A., Boutalis, Y.S.: Cedd: Color and edge directivity descriptor: A compact descriptor for image indexing and retrieval. In: Gasteratos, A., Vincze, M., Tsotsos, J.K. (eds.) ICVS 2008. LNCS, vol. 5008, pp. 312–322. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  4. 4.
    Giacinto, G.: A nearest-neighbor approach to relevance feedback in content based image retrieval. In: CIVR 2007: Proceedings of the 6th ACM International Conference on Image and Video Retrieval, pp. 456–463. ACM, New York (2007)Google Scholar
  5. 5.
    Giacinto, G., Roli, F.: Dissimilarity representation of images for relevance feedback in content-based image retrieval. In: Perner, P., Rosenfeld, A. (eds.) MLDM 2003. LNCS, vol. 2734, pp. 202–214. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  6. 6.
    Giacinto, G., Roli, F.: Bayesian relevance feedback for content-based image retrieval. Pattern Recognition 37(7), 1499–1508 (2004)CrossRefMATHGoogle Scholar
  7. 7.
    Giacinto, G., Roli, F.: Nearest-prototype relevance feedback for content based image retrieval. In: ICPR (2), pp. 989–992 (2004)Google Scholar
  8. 8.
    Griffin, G., Holub, A., Perona, P.: Caltech-256 object category dataset. Tech. Rep. 7694, California Institute of Technology (2007), http://authors.library.caltech.edu/7694
  9. 9.
    Kittler, J., Hatef, M., Duin, R.P.W., Matas, J.: On combining classifiers. IEEE Trans. Pattern Anal. Mach. Intell. 20(3), 226–239 (1998)CrossRefGoogle Scholar
  10. 10.
    Kuncheva, L.I.: Combining Pattern Classifiers: Methods and Algorithms. Wiley, Chichester (2004)CrossRefMATHGoogle Scholar
  11. 11.
    Lux, M., Chatzichristofis, S.A.: Lire: lucene image retrieval: an extensible java cbir library. In: MM 2008: Proceeding of the 16th ACM International Conference on Multimedia, pp. 1085–1088. ACM, New York (2008)Google Scholar
  12. 12.
    Nguyen, G.P., Worring, M., Smeulders, A.W.M.: Similarity learning via dissimilarity space in cbir. In: Wang, J.Z., Boujemaa, N., Chen, Y. (eds.) Multimedia Information Retrieval, pp. 107–116. ACM, New York (2006)Google Scholar
  13. 13.
    Pekalska, E., Duin, R.P.W.: The Dissimilarity Representation for Pattern Recognition: Foundations And Applications (Machine Perception and Artificial Intelligence). World Scientific Publishing Co., Inc., River Edge (2005)CrossRefMATHGoogle Scholar
  14. 14.
    Piras, L., Giacinto, G.: Neighborhood-based feature weighting for relevance feedback in content-based retrieval. In: WIAMIS, pp. 238–241. IEEE Computer Society, Los Alamitos (2009)Google Scholar
  15. 15.
    Rui, Y., Huang, T.S.: Relevance feedback techniques in image retrieval. In: Lew, M.S. (ed.) Principles of Visual Information Retrieval, pp. 219–258. Springer, London (2001)CrossRefGoogle Scholar
  16. 16.
    Tamura, H., Mori, S., Yamawaki, T.: Textural features corresponding to visual perception. IEEE Trans. Systems, Man and Cybernetics 8(6), 460–473 (1978)CrossRefGoogle Scholar
  17. 17.
    Zhang, L., Lin, F., Zhang, B.: Support vector machine learning for image retrieval. In: ICIP (2), pp. 721–724 (2001)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Luca Piras
    • 1
  • Giorgio Giacinto
    • 1
  1. 1.Department of Electrical and Electronic EngineeringUniversity of CagliariCagliariItaly

Personalised recommendations