Advertisement

The Complex Wave Representation of Distance Transforms

Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6819)

Abstract

The complex wave representation (CWR) converts unsigned 2D distance transforms into their corresponding wave functions. The underlying motivation for performing this maneuver is as follows: the normalized power spectrum of the wave function is an excellent approximation (at small values of Planck’s constant—here a free parameter τ) to the density function of the distance transform gradients. Or in colloquial terms, spatial frequencies are gradient histogram bins. Since the distance transform gradients have only orientation information, the Fourier transform values mainly lie on the unit circle in the spatial frequency domain. We use the higher-order stationary phase approximation to prove this result and then provide empirical confirmation at low values of τ. The result indicates that the CWR of distance transforms is an intriguing and novel shape representation.

Keywords

distance transforms Voronoi Hamilton-Jacobi equation Schrödinger wave function complex wave representation (CWR) stationary phase (method of) gradient density power spectrum 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Blake, A., Zisserman, A.: Visual Reconstruction. The MIT Press, Cambridge (1987)Google Scholar
  2. 2.
    Bohm, D.: A suggested interpretation of the quantum theory in terms of ”hidden variables”, I . Physical Review 85, 166–179 (1952)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Bracewell, R.N.: The Fourier Transform and its Applications, 3rd edn. McGraw-Hill Science and Engineering (1999)Google Scholar
  4. 4.
    Butterfield, J.: On Hamilton-Jacobi theory as a classical root of quantum theory. In: Elitzur, A., Dolev, S., Kolenda, N. (eds.) Quo-Vadis Quantum Mechanics. ch. 13, pp. 239–274. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  5. 5.
    Chaichian, M., Demichev, A.: Path Integrals in Physics: Stochastic Processes and Quantum Mechanics, vol. I. Institute of Physics Publishing (2001)Google Scholar
  6. 6.
    Christensen, G.E., Rabbitt, R.D., Miller, M.I.: Deformable templates using large deformation kinematics. IEEE Transactions on Image Processing 5(10), 1435–1447 (1996)CrossRefGoogle Scholar
  7. 7.
    de Berg, M., Cheong, O., van Kreveld, M., Overmars, M.: Computational Geometry: Algorithms and Applications, 3rd edn. Springer, Heidelberg (2010)zbMATHGoogle Scholar
  8. 8.
    Geiger, D., Yuille, A.L.: A common framework for image segmentation. International Journal of Computer Vision 6(3), 227–243 (1991)CrossRefGoogle Scholar
  9. 9.
    Geman, S., Geman, D.: Stochastic relaxation, Gibbs distributions, and the Bayesian restoration of images. IEEE Transactions on Pattern Analysis and Machine Intelligence 6(6), 721–741 (1984)CrossRefzbMATHGoogle Scholar
  10. 10.
    Jones, D.S., Kline, M.: Asymptotic expansions of multiple integrals and the method of stationary phase. Journal of Mathematical Physics 37, 1–28 (1958)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Olver, F.W.J.: Asymptotics and Special Functions. A.K. Peters/CRC Press, Boca Raton (1997)zbMATHGoogle Scholar
  12. 12.
    Osher, S.J., Fedkiw, R.P.: Level Set Methods and Dynamic Implicit Surfaces. Springer, Heidelberg (2002)zbMATHGoogle Scholar
  13. 13.
    Osher, S.J., Sethian, J.A.: Fronts propagating with curvature dependent speed: algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1), 12–49 (1988)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Rangarajan, A., Gurumoorthy, K.S.: A schrödinger wave equation approach to the eikonal equation: Application to image analysis. In: Cremers, D., Boykov, Y., Blake, A., Schmidt, F.R. (eds.) EMMCVPR 2009. LNCS, vol. 5681, pp. 140–153. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  15. 15.
    Siddiqi, K., Pizer, S. (eds.): Medial Representations: Mathematics, Algorithms and Applications. Computational Imaging and Vision. Springer, Heidelberg (2008)zbMATHGoogle Scholar
  16. 16.
    Siddiqi, K., Tannenbaum, A.R., Zucker, S.W.: A hamiltonian approach to the eikonal equation. In: Hancock, E.R., Pelillo, M. (eds.) EMMCVPR 1999. LNCS, vol. 1654, pp. 1–13. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  17. 17.
    Tu, Z., Chen, X., Yuille, A.L., Zhu, S.C.: Image parsing: Unifying segmentation, detection, and recognition. International Journal of Computer Vision 63(2), 113–140 (2005)CrossRefGoogle Scholar
  18. 18.
    Wong, R.: Asymptotic Approximations of Integrals. Academic Press, Inc., London (1989)zbMATHGoogle Scholar
  19. 19.
    Wong, R., McClure, J.P.: On a method of asymptotic evaluation of multiple integrals. Mathematics of Computation 37(156), 509–521 (1981)MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Yuille, A.L.: Generalized deformable models, statistical physics, and matching problems. Neural Computation 2(1), 1–24 (1990)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  1. 1.Department of Computer and Information Science and EngineeringUniversity of FloridaGainesvilleUSA

Personalised recommendations