Advertisement

Petrological and Chemical Characterisation of High-Purity Quartz Deposits with Examples from Norway

  • Axel MüllerEmail author
  • Jan Egil Wanvik
  • Peter M. Ihlen
Chapter
Part of the Springer Geology book series (SPRINGERGEOL)

Abstract

Demand for high-purity quartz (HPQ) is strongly increasing worldwide owing to growing consumption and an increasing range of high-technology applications. This study includes: (1) a refined definition of HPQ (2) a discussion of the impurities controlling the chemical quality of HPQ products and (3) descriptions of selected HPQ deposits in Norway, both economic and potentially economic examples. The suggested definition of HPQ proposes concentration limits for the most important detrimental elements. The maximum content of each element should be: Al <30 μg g−1, Ti <10 μg g−1, Na <8 μg g−1, K <8 μg g−1, Li <5 μg g−1, Ca <5 μg g−1, Fe <3 μg g−1, P <2 μg g−1 and B <1 μg g−1 whereby the sum of all elements should not exceed 50 μg g−1.Impurities within quartz crystals (intracrystalline impurities) control the quality of HPQ products because they cannot be removed by conventional processing. These impurities include (i) lattice-bound trace elements, (ii) submicron inclusions <1 μm, and (iii) mineral and fluid micro inclusions (>1 μm). Present knowledge about intracrystalline impurities in natural quartz is described. The methods used here for identification and analysis of impurities are backscattered electron (BSE) and cathodoluminesence (SEM-CL) imaging and laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS). The HPQ deposits discussed include the Melkfjell quartzite, several kyanite quartzites, the Nedre Øyvollen pegmatite and the Kvalvik, Nesodden and Svanvik hydrothermal quartz veins. The discussion focuses on the content of lattice-bound trace elements and the micro-inclusion inventory because these are the major parameters which determine the quality of HPQ products. Finally, processes leading to HPQ formation are discussed.

Notes

Acknowledgments

This study was supported by the Geological Survey of Norway (NGU). We greatly appreciate the language improvement of R. Boyd. We are grateful to the management of the Norwegian Crystallites AS who allowed the publication of data related to the Nedre Øyvollen and Svanvik quartz deposits.

References

  1. Adachi T, Hokada T, Osanai Y, Toyoshima T, Baba S, Nakano N (2010) Titanium behavior in quartz during retrograde hydration: occurrence of rutile exsolution and implications for metamorphic processes in the Sør Rondane Mountains, East Antarctica. Polar Sci 3:222–234Google Scholar
  2. Åmli R, Lund B (1979) Diamantboringer Nedre Øyvollen kvartsforekomst, Drag i Tysfjord. NGU rapport 1771, 6 ppGoogle Scholar
  3. Andresen A, Tull JF (1986) Age and tectonic setting of the Tysfjord gneiss granite, Efjord, North Norway. Norsk Geologisk Tidsskrift 66:69–80Google Scholar
  4. Bambauer HU, Brunner GO, Laves F (1962) Wasserstoff-Gehalte in Quarzen aus Zerrklüften der Schweizer Alpen und die Deutung ihrer regionalen Abhängigkeit. Schweizerische Mineralogische und Petrographische Mitteilungen 42:221–236Google Scholar
  5. Bartovic S, Beane R (2007) Analysis of blue color in quartz grains from cushing formation, peaks island, maine. In: Abstracts GSM spring meeting 2007, GSM Newsletter 36/2:4Google Scholar
  6. Beurlen H, Müller A, Silva D, Da Silva MRR (2011) Petrogenetic significance of trace-element data analyzed with LA-ICP-MS in quartz from the Borborema pegmatite province, northeastern Brazil. Mineral Mag 75:2703–2719Google Scholar
  7. Bibikova EV, Ihlen PM, Marker M (2001) Age of the hydrothermal alteration leading to garnetite and kyanite pseudo-quartzite formation in the Khizovaara segment of the late Archean Keret Greenstone Belt, Russian Karelia. EUG XI Strasbourg, 8–12 April 2001. J Conf Abstr 6:277Google Scholar
  8. Björklund L (1989) Geology of the Akkajaure–Tysfjord–Lofoten traverse, N. Scandinavian Caledonides. Ph D thesis, Chalmers Tekniska Högskola och Göteborgs Universitet, publ. A 59, 214 ppGoogle Scholar
  9. Blankenburg H-J, Götze J, Schulz H (1994) Quarzrohstoffe. Deutscher Verlag für Grundstoffindustrie, Leipzig-Stuttgart, 296 ppGoogle Scholar
  10. Breiter K, Müller A (2009) Evolution of rare-metal granitic magmas documented by quartz chemistry. Eur J Mineral 21:335–346Google Scholar
  11. Brouard S, Breton J, Girardet G (1995) Small alkali metal clusters on (001) quartz surface: adsorption and diffusion. J Mol Struct (Theochem) 334:145–153Google Scholar
  12. Bruhn F, Bruckschen P, Meijer J, Stephan A, Richter DK, Veizer J (1996) Cathodoluminescence investigations and trace-element analysis of quartz by micro-PIXE: implications for diagenetic and provenance studies in sandstone. Can Mineral 34:1223–1232Google Scholar
  13. Černý P, Ercit TS (2005) The classification of granitic pegmatites. Can Mineral 43:2005–2026Google Scholar
  14. Cherniak DJ, Watson EB, Wark DA (2007) Ti diffusion in quartz. Chem Geol 236:65–74Google Scholar
  15. Dahl Ø (1980) Nasa og Stødi kyanittfelter-resultater fra diamantboring og geologiske undersøkelser sommeren. Aspro rapport 1115. Bergvesenrapport BV 3506, 21 ppGoogle Scholar
  16. Dennen WH (1966) Stoichiometric substitution in natural quartz. Geochimica et Cosmochimica Acta 30:1235–1241Google Scholar
  17. Flem B, Larsen RB, Grimstvedt A, Mansfeld J (2002) In situ analysis of trace elements in quartz by using laser ablation inductively coupled plasma mass spectrometry. Chem Geol 182:237–247Google Scholar
  18. Flicstein J, Schieber M (1974) Microsegregation of impurities in hydrothermally-grown quartz crystals. J Cryst Growth 24(25):603–609Google Scholar
  19. Fossen H, Hurich CA (2005) The Hardangerfjord Shear Zone in SW Norway and the North Sea: a large-scale low-angle shear zone in the Caledonian crust. J Geol Soc Lond 162:675–687Google Scholar
  20. Frazier AS, Gobel VW (1982) Rutile as cause of blue color of quartz from llanite, Llano County, Texas. In: Abstracts with programs, Geological Society of America 14/3:111Google Scholar
  21. Frezzotti M-L (2001) Silicate-melt inclusions in magmatic rocks: applications to petrology. Lithos 55:273–299Google Scholar
  22. Frondel C (1962) The system of mineralogy: vol III. Silica minerals, Wiley, New York, 602 ppGoogle Scholar
  23. Fruth M, Blankenburg H-J (1992) Charakterisierung von authigenen idiomorphen Kohle- und Salinarquarzen durch Einschlussuntersuchungen. Neues Jahrbuch für Mineralogie Abhandlungen 165:53–64Google Scholar
  24. Geis HP (1964a) Befaring av kvartsforekomst Nesodden ved Løvfallstrand, Hardanger. NGU Rapport BA 7978, p 5Google Scholar
  25. Geis HP (1964b) Befaring av Nesodden kvartsforekomst, Hardanger. NGU Rapport BA 7981, p 4Google Scholar
  26. Geis HP (1965a) Undersøkelse av kvartsforekomsten Nesodden ved Løvfallstrand. NGU Rapport BA 7979, p 7Google Scholar
  27. Geis HP (1965b) Nesodden kvartsforekomst. NGU Rapport BA 7980, p 10Google Scholar
  28. GeoReM (2011) Geological and environmental reference materials. http://georem.mpch-mainz.gwdg.de. Accessed 2 Feb 2011
  29. Gerler J (1990) Geochemische Untersuchungen an hydrothermalen, metamorphen, granitischen und pegmatitischen Quarzen und deren Flüssigkeitseinschlüssen. Ph.D. thesis, University Göttingen, 169 ppGoogle Scholar
  30. Gjelle S (1988) Geologisk kart over Norge, berggrunnskart Saltdal, M 1: 250.000. Geological Survey of Norway, TrondheimGoogle Scholar
  31. Götze J (2009) Chemistry, textures and physical properties of quartz geological interpretation and technical application. Mineral Mag 73:645–671Google Scholar
  32. Götze J (2012) Mineralogy, geochemistry and cathodoluminescence of authigenic quartz from different sedimentary rocks. (this volume)Google Scholar
  33. Götze J, Plötze M (1997) Investigation of trace-element distribution in detrital quartz by Electron Paramagnetic Resonance (EPR). Eur J Mineral 9:529–537Google Scholar
  34. Götze J, Plötze M, Habermann D (2001) Origin, spectral characteristics and practical applications of the cathodoluminescence (CL) of quartz—a review. Mineral Petrol 71:225–250Google Scholar
  35. Götze J, Plötze M, Graupner T, Hallbauer DK, Bray C (2004) Trace element incorporation into quartz: a combined study by ICP-MS, electron spin resonance, cathodoluminescence, capillaryion analysis and gas chromatography. Geochimica et Cosmochimica Acta 68:3741–3759Google Scholar
  36. Gustavson M, Gjelle ST (1991) Berggrunnskart Mo i Rana 1: 250 000. Geological Survey of Norway, TrondheimGoogle Scholar
  37. Harben PW (2002) The industrial mineral handybook—a guide to markets, specifications and prices, 4th edn. Industrial Mineral Information. Worcester Park, p 412Google Scholar
  38. Haus R (2005) High demands on high purity—processing of high purity quartz and diatomite. Industrial Minerals October 2005, pp 62–67Google Scholar
  39. Hertweck B, Niedermayr G, Beran A (2003) OH zoning ion alpine quartz from Austria. European Geophysical Society (CD-Rom) Vol. 5, EGS-AGU-EUG Joint Assembly, 6th–11th April 2003, Nice, France, 08506Google Scholar
  40. Husdal T (2008) The minerals of the pegmatites within the Tysfjord granite, northern Norway. Bergverksmuseets Skrift 38:5–28Google Scholar
  41. Hyrsl J, Niedermayr G (2003) Magic world: inclusions in quartz—Geheimnisvolle Welt: Einschlüsse im Quarz. Bode Verlag GmbH, Haltern, 240 ppGoogle Scholar
  42. Ihlen PM (2000) Utilisation of sillimanite minerals, their geology, and potential occurrences in Norway—an overview. NGU Bulletin 436:113–128Google Scholar
  43. Ihlen PM, Müller A (2011) Forekomster av høyren kvarts langs Hardangerfjorden. NGU Rapport 2009.024, Trondheim, 69 ppGoogle Scholar
  44. Ingdal SE, Torske T, Kvale A (2001) Bergrunnskart Jondal 1315 4, M 1:50000. Geological Survey of Norway, TrondheimGoogle Scholar
  45. IOTA® (2011) IOTA® high purity quartz. http://www.iotaquartz.com/techiota4data.html Accessed 20 May 2011
  46. Jacamon F, Larsen RB (2009) Trace element evolution of quartz in the charnockitic Kleivan granite, SW Norway: the Ge/Ti ratio of quartz as an index of igneous differentiation. Lithos 107:281–191Google Scholar
  47. Jakobsen BM, Nielsen E (1977) Kyanit kvartsit projektet 1976–1977. Laboratorienrapport. Endogen Laboratorium. Geologisk Institut Aarhus Universitet, Aarhus, Denmark, 19 ppGoogle Scholar
  48. Jourdan A-L, Vennemann TW, Mullis J, Ramseyer K, Spiers CJ (2009) Evidence of growth and sector zoning in hydrothermal quartz from Alpine veins. Eur J Mineral 21:219–231Google Scholar
  49. Jung L (1992) High purity natural quartz. Part I: High purity natural quartz for industrial use. Part II: High purity natural quartz markets for suppliers and users. Quartz Technology, Liberty Corner , p 657Google Scholar
  50. Korneliussen A, Sawyer EW (1989) The geochemistry of lower proterozoic mafic to felsic igneous rocks, rombak window, North Norway. NGU Bull 415:7–21Google Scholar
  51. Larsen RB, Henderson I, Ihlen PM, Jacamon F (2004) Distribution and petrogenetic behaviour of trace elements in granitic quartz from South Norway. Contributions Mineral Petrol 147:615–628Google Scholar
  52. Larsson D (2001) Transition of granite to quartz-kyanite rock at Hålsjöberg, southern Sweden: consequence of acid leaching and later metamorphism. GFF 123:237–246Google Scholar
  53. Leeder O, Thomas R, Klemm W (1987) Einschlüsse in Mineralen. VEB Deutscher Grundstoffverlag, Leipzig, 180 ppGoogle Scholar
  54. Levchenkov OA, Levsky LK, Nordgulen Ø, Dobrzhinetskaya, Vetrin VR, Cobbing J, Nilsson LP, Sturt BA (1995) U–Pb zircon ages from Sørvaranger, Norway, and the western part of the Kola Peninsula, Russia. NGU Special Publication 7:29–47Google Scholar
  55. Luckscheiter B, Morteani G (1981) The H contents of quartz from Alpine veins from the penninic rocks of the central and western tauern window (Austria/Italy). Tschermaks Mineralogisch-Petrologische Mitteilungen 28:223–228Google Scholar
  56. Maschmeyer D, Lehmann G (1983) A trapped-hole center causing rose coloration of natural quartz. Zeitschrift für Kristallographie 163:181–196Google Scholar
  57. McLaren AC, Cook RF, Hyde ST, Tobin RC (1983) The mechanism of the formation and growth of water bubbles and associated dislocation loops in synthetic quartz. Phys Chem Miner 9:79–94Google Scholar
  58. Meinhold G (2010) Rutile and its applications in the earth sciences. Earth Sci Rev 102:1–28Google Scholar
  59. Melezhik VA, Sturt BA (1994) A review of the general geology and history of the development of the early Proterozoic Polmalk-Pasvik-Pecheng Imandra/Varzuga-Ust’Ponoy Greenstone Belt. Earth Sci Rev 36:205–241Google Scholar
  60. Miyoshi N, Yamaguchi Y, Makino K (2005) Successive zoning of Al and H in hydrothermal vein quartz. Am Mineral 90:310–315Google Scholar
  61. Monecke T, Kempe U, Götze J (2002) Genetic significance of the trace element content in metamorphic and hydrothermal quartz: A reconnaissance study. Earth Planetary Sci Lett 202:709–724Google Scholar
  62. Müller A, Koch-Müller M (2009) Hydrogen speciation and trace element contents of igneous, hydrothermal and metamorphic quartz from Norway. Mineral Mag 73:569–583Google Scholar
  63. Müller A, Seltmann R, Behr HJ (2000) Application of cathodoluminescence to magmatic quartz in a tin granite—case study from the Schellerhau Granite Complex, Eastern Erzgebirge, Germany. Mineralium Deposita 35:169–189Google Scholar
  64. Müller A, Kronz A, Breiter K (2002a) Trace elements and growth patterns in quartz: a fingerprint of the evolution of the subvolcanic Podlesi Granite System (Krušne Hory, Czech Republic). Bull Czech Geol Surv 77:135–145Google Scholar
  65. Müller A, Lennox P, Trzebski R (2002b) Cathodoluminescence and micro-structural evidence for crystallisation and deformation processes of granites in the Eastern Lachlan Fold Belt (SE Australia). Contributions Mineral Petrol 143:510–524)Google Scholar
  66. Müller A, Wiedenbeck M, van den Kerkhof AM, Kronz A, Simon K (2003a) Trace elements in quartz—a combined electron microprobe, secondary ion mass spectrometry, laser-ablation ICP-MS, and cathodoluminescence study. Eur J Mineral 15:747–763Google Scholar
  67. Müller A, René M, Behr H-J, Kronz A (2003b) Trace elements and cathodoluminescence of igneous quartz in topaz granites from the Hub Stock (Slavkovsky′ Les Mts, Czech Republic). Mineral Petrol 79:167–191Google Scholar
  68. Müller A, Breiter K, Seltmann R, Pécskay Z (2005a) Quartz and feldspar zoning in the Eastern Erzgebirge pluton (Germany, Czech Republic): evidence of multiple magma mixing. Lithos 80:201–227Google Scholar
  69. Müller A, Wanvik JE, Kronz A (2005b) Norwegian kyanite quartzites—potential resources of high purity quartz? NGU Report 2005.039, Trondheim, Norway, 70 ppGoogle Scholar
  70. Müller A, Williamson BJ, Smith M (2005c) Origin of quartz cores in tourmaline from Roche Rock, SW England. Mineral Mag 69:381–401Google Scholar
  71. Müller A, Ihlen PM, Wanvik JE, Flem B (2007) High-purity quartz mineralisation in kyanite quartzites, Norway. Mineralium Deposita 42:523–535Google Scholar
  72. Müller A, Ihlen PM, Kronz A (2008a) Quartz chemistry in polygeneration Sveconorwegian pegmatites, Froland, Norway. Eur J Mineral 20:447–463Google Scholar
  73. Müller A, Wiedenbeck M, Flem B, Schiellerup H (2008b) Refinement of phosphorus determination in quartz by LA-ICP-MS through defining new reference material values. Geostand Geoanal Res 32(3):361–376Google Scholar
  74. Müller A, Behr H-J, van den Kerkhof AM, Kronz A, Koch-Müller M (2010a) The evolution of late-Hercynian granites and rhyolites documented by quartz—a review. Earth Environ Sci Trans Royal Soc Edinburgh 100:185–204Google Scholar
  75. Müller A, Herrington R, Armstrong R, Seltmann R, Kirwin DJ, Stenina NG, Kronz A (2010b) Trace elements and cathodoluminescence of quartz in stockwork veins of Mongolian porphyry-style deposits. Mineralium Deposita 45:707–727Google Scholar
  76. Neumann H (1952) Feltspat forekomster i Tysfjorddistriktet. NGU Bergarkivrapport nr. 5208Google Scholar
  77. Nordgulen Ø (1999) Geologisk kart over Norge, Berggrunnskart Hamar, M 1: 250.000. Geol Surv Norway, TrondheimGoogle Scholar
  78. Northrup CJ (1997) Timing structural assembly, metamorphism, and cooling of the Caledonian nappes in the Ofoten-Efjorden area, north Norway: Tectonic insights from U-Pb and 40Ar/39Ar geochronology. J Geol 105:565–582Google Scholar
  79. Norwegian Crystallites AS (2011) http://norcryst.no/. Accessed 21 Jan 2011
  80. Parker RB (1962) Blue quartz from the Wind River Range, Wyoming. Am Mineral 47:1201–1202Google Scholar
  81. Passchier CW, Trouw RAJ (2006) Microtectonics. Springer, Heidelberg 366 ppGoogle Scholar
  82. Penniston-Dorland SC (2001) Illumination of vein quartz textures in a porphyry copper ore deposits using scanned cathodoluminescence: grasberg igneous complex, Irian Jaya, Indonesia. Am Mineral 86:652–666Google Scholar
  83. Pfenninger H (1961) Diffusion von Kationen und Abscheidung von Metallen in Quarz unter elektrischer Feldeinwirkung. PhD Thesis, University ZürichGoogle Scholar
  84. Ramseyer K, Mullis J (1990) Factors influencing short-lived blue cathodoluminescence of -quartz. Am Mineral 75:791–800Google Scholar
  85. Richter DK (1971) Fazies- und Diagenesehinweise durch Einschlüsse in authigenen Quarzen. Neues Jahrbuch für Geologie und Paläontologie Monatshefte 10:604–622Google Scholar
  86. Roedder E (1984) Fluid inclusions. Reviews in mineralogy, vol. 12. Mineralogical Society of America, Washington, 644 pGoogle Scholar
  87. Rusk BG, Lowers HA, Reed MH (2008) Trace elements in hydrothermal quartz: relationships to cathodoluminescence textures and insights into vein formation. Geology 36:547–550Google Scholar
  88. Sawyer E (1986) Metamorphic assemblages and conditions in the Rombak basement window. NGU Rapport 88.116, Trondheim, Norway, 11 ppGoogle Scholar
  89. Seifert W, Rhede D, Thomas R, Förster H-J, Lucassen F, Dulski P, Wirth R (2011) On the origin of igneous blue quartz: inferences from a multi-analytical study of submicron mineral inclusions. Mineral Mag 75:2519–2534Google Scholar
  90. Shepherd TJ, Rankin AH, Alderton DHM (1985) A practical guide to fluid inclusion studies. Blackie and Sons, Glasgow 239 ppGoogle Scholar
  91. Siebers FB (1986) InhomogeneVerteilung von Verunreinigungen in gezüchteten und natürlichen Quarzen als Funktion derWachstumsbedingungen und ihr Einfluß auf kristallphysikalische Eigenschaften. PhD Thesis, Ruhr-Universität Bochum, 133 ppGoogle Scholar
  92. Siedlecka A, Nordgulen Ø (1996) Geologisk kart over Norge, berggrunnskart Kirkenes, M 1:250 000. Geological Survey of Norway, Trondheim, NorwayGoogle Scholar
  93. Sigmond EMO (1998) Geologisk kart over Norge; Berggrunnskart Odda–M 1:250.000. Geological Survey of Norway, Trondheim, NorwayGoogle Scholar
  94. Simon K (2001) Does δD from fluid inclusion in quartz reflect the original hydrothermal fluid? Chem Geol 177:483–495Google Scholar
  95. Simpson DR (1977) Aluminum phosphate variants in feldspars. Am Mineral 62:351–355Google Scholar
  96. Solli A, Nordgulen Ø (2006) Bedrock map of Norway and the Caledonides in Sweden and Finland. Scale 1: 2 000 000. Geological Survey of Norway, TrondheimGoogle Scholar
  97. Stephens MB, Gustavson M, Ramberg IB, Zachrisson E (1985) The Caledonides of central north Scandinavia—a tectonostratigraphic overview. In: Gee DG, Sturt BA (eds) The Caledonide Orogen—Scandinavia and Related Areas. Wiley, New York, pp 135–162Google Scholar
  98. Thomas S-M (2008) Wasserstoff in nominell wasserfreien Mineralen. PhD thesis. TU Berlin, D 83, Berlin, Germany, 134 ppGoogle Scholar
  99. Thomas R, Webster JD, Davidson P (2006) Understanding pegmatite formation: the melt and fluid inclusion approach. In: Webster JD (ed) Melt inclusions in plutonic rocks. Mineralogical Association of Canada, Short Course Series 36:189–210Google Scholar
  100. Tveten E, Lutro O, Thorsnes T (1998) Geologisk kart over Norge, berggrunnskart Ålesund, 1: 250.000. Geological Survey of Norway, Trondheim, Norway.Google Scholar
  101. Van den Kerkhof AM, Hein UF (2001) Fluid inclusion petrography. Lithos 55:27–47Google Scholar
  102. Van den Kerkhof AM, Müller A (1999) Fluid inclusion re-equilibration and trace element redistribution in quartz: observations by cathodoluminescence microscopy. ECROFI XV 1999 Abstracts and Program, Potsdam, Terra Nostra 99(6):161–162Google Scholar
  103. Van den Kerkhof AM, Kronz A, Simon K, Scherer T (2004) Fluid-controlled quartz recovery in granulite as revealed bycathodoluminescence and trace element analysis (Bamble sector, Norway). Contributions Mineral Petrol 146:637–652Google Scholar
  104. Wanvik JE (1988) Svanvik kvartsforekomst i Pasvik, Sør-Varanger kommune. NGU Rapport 87.081, Trondheim, Norway, 18 ppGoogle Scholar
  105. Wanvik JE (1989a) Statusrapport 1989 for undersøkelse av Svanvik kvartsforekomst. NGU Rapport 89.078, Trondheim, Norway, 17 ppGoogle Scholar
  106. Wanvik JE (1989b) Sluttrapport for undersøkelse av Svanvik kvartsforekomst. NGU Rapport 89.165, Trondheim, Norway, 9 ppGoogle Scholar
  107. Wanvik JE (1998) Kyanite investigations in Tverrådalen, Surnadal. NGU Rapport 98.080, Trondheim, Norway, 24 ppGoogle Scholar
  108. Wanvik JE (2001) Kvartsressurser i Nordland. NGU Rapport 2001.020, Trondheim, Norway, 103 ppGoogle Scholar
  109. Wanvik JE (2009) Melkfjell kvartsittforekomst–feltundersøkelser høsten 2008. NGU Rapport 2009.025, Trondheim, Norway, 51 ppGoogle Scholar
  110. Wark DA, Watson EB (2006) TitaniQ: a titanium-in-quartz geothermometer. Contributions Mineral Petrol 152:743–754Google Scholar
  111. Watt GR, Wright P, Galloway S, McLean C (1997) Cathodoluminescence and trace element zoning in quartz phenocrysts and xenocrysts. Geochimica et Cosmochimica Acta 61:4337–4348Google Scholar
  112. Webster JD (ed) (2006) Melt inclusions in plutonic rocks. Mineralogical Association of Canada, Short Course Series 36, Montreal, Canada, 237 ppGoogle Scholar
  113. Weil JA (1984) A review of electron spin spectroscopy and its application to the study of paramagnetic defects in crystalline quartz. Phys Chem Miner 10:149–165Google Scholar
  114. Weil JA (1993) A review of the EPR spectroscopy of the point defects in a-quartz: The decade 1982–1992. In: Helms CR, Deal BE (eds) Physics and Chemistry of SiO2 and the Si-SiO2 interface 2. Plenum Press, New York, pp 131–144Google Scholar
  115. Zolensky ME, Sylvester PJ, Paces JB (1988) Origin and significance of blue coloration in quartz from Llano rhyolite (llanite), north-central Llano County, Texas. Am Mineral 73:313–332Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Axel Müller
    • 1
    Email author
  • Jan Egil Wanvik
    • 1
  • Peter M. Ihlen
    • 1
  1. 1.Geological Survey of NorwayTrondheimNorway

Personalised recommendations