The Impact of Community Structure of Social Contact Network on Epidemic Outbreak and Effectiveness of Non-pharmaceutical Interventions

  • Youzhong Wang
  • Daniel Zeng
  • Zhidong Cao
  • Yong Wang
  • Hongbin Song
  • Xiaolong Zheng
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6749)


The topology structure of social contacts network has a big impact on dynamic patterns of epidemic spreading and effectiveness of non-pharmaceutical interventions. Corresponding to individuals’ behavioral or functional units, people are commonly organized in small communities, meaning that most of social contacts networks tend to display community structure property. Through empirical investigation and Monte-Carlo simulation on a big H1N1 outbreak in a Chinese university campus, this paper explores the impact of community structure property of social contacts network on epidemic spreading and effectiveness of interventions. A stochastic model based on social contacts networks among students is constructed to simulate this outbreak, revealing that epidemic outbreaks commonly occur in local community. Moreover, effectiveness of three quarantine-based interventions is quantitatively studied by our proposed model, finding that community structure of social networks determines the effects these measures.


community structure social contact network epidemic outbreak non-pharmaceutical Interventions H1N1 


  1. 1.
    Kermack, W.O., McKendrick, A.G.: Contributions to the mathematical theory of epidemics. Proceedings of the Royal Society of London 115, 700–721 (1927)CrossRefzbMATHGoogle Scholar
  2. 2.
    Barthélemy, M., Barrat, A., Pastor-Satorras, R., Vespignani, A.: Dynamical patterns of epidemic outbreaks in complex heterogeneous networks. Journal of Theoretical Biology 235, 275–288 (2005)CrossRefMathSciNetGoogle Scholar
  3. 3.
    Kiss, I.Z., Green, D.M., Kao, R.R.: The effect of network mixing patterns on epidemic dynamics and the efficacy of disease contact tracing. Journal of The Royal Society Interface 5, 791–799 (2008)CrossRefGoogle Scholar
  4. 4.
    Moore, C., Newman, M.E.J.: Epidemics and percolation in small-world networks. Physical Review E 61, 5678 (2000)Google Scholar
  5. 5.
    Newman, M.: Modularity and community structure in networks. Proceedings of the National Academy of Sciences 103, 8577 (2006)Google Scholar
  6. 6.
    Yang, Y., Sugimoto, J., Halloran, M., Basta, N., Chao, D., Matrajt, L., Potter, G., Kenah, E., Longini Jr., I.: The transmissibility and control of pandemic influenza A (H1N1) virus. Science 1177373v1177371 (2009)Google Scholar
  7. 7.
    Cauchemez, S., Bhattarai, A., Marchbanks, T.L., Fagan, R.P., Ostroff, S., Ferguson, N.M., Swerdlow, D.: Role of social networks in shaping disease transmission during a community outbreak of 2009 H1N1 pandemic influenza. Proceedings of the National Academy of Sciences (2009)Google Scholar
  8. 8.
    Lipsitch, M., Cohen, T., Cooper, B., Robins, J.M., Ma, S., James, L., Gopalakrishna, G., Chew, S.K., Tan, C.C., Samore, M.H., Fisman, D., Murray, M.: Transmission Dynamics and Control of Severe Acute Respiratory Syndrome. Science 300, 1966–1970 (2003)CrossRefGoogle Scholar
  9. 9.
    Ou, J., Dun, Z., Li, Q., Qin, A., Zeng, G.: Efficiency of the quarantine system during the epidemic of severe acute respiratory syndrome in Beijing. Zhonghua liu xing bing xue za zhi= Zhonghua liuxingbingxue zazhi 24, 1093 (2003)Google Scholar
  10. 10.
    Grassly, N.C., Fraser, C.: Mathematical models of infectious disease transmission. Nat. Rev. Micro. 6, 477–487 (2008)Google Scholar
  11. 11.
    Han, K., Zhu, X., He, F., Liu, L., Zhang, L., Ma, H., Tang, X., Huang, T., Zeng, G., Zhu, B.: Lack of airborne transmission during outbreak of pandemic (H1N1) 2009 among Tour Group Members. Emerging Infectious Disease 10, 1578–1581 (2009)CrossRefGoogle Scholar
  12. 12.
    Shen, Z., Ning, F., Zhou, W., He, X., Lin, C., Chin, D., Zhu, Z., Schuchat, A.: Superspreading SARS events, Beijing. Emerging Infectious Diseases 10, 256–260 (2004)CrossRefGoogle Scholar
  13. 13.
    ZhiDong, C., DaJun, Z., QuanYi, W., XiaoLong, Z., FeiYue, W.: An epidemiological analysis of the Beijing 2008 Hand-Foot-Mouth epidemic. Chinese Science Bulletin 55, 1142–1149 (2010)CrossRefGoogle Scholar
  14. 14.
    Cao, Z.D., Zeng, D.J., Zheng, X.L., Wang, Q.Y., Wang, F.Y., Wang, J.F., Wang, X.L.: Spatio-temporal evolution of Beijing 2003 SARS epidemic. Science China Earth Sciences, 1–12 (2010)Google Scholar
  15. 15.
    Bondy, S., Russell, M., Lafleche, J., Rea, E.: Quantifying the impact of community quarantine on SARS transmission in Ontario: estimation of secondary case count difference and number needed to quarantine. BMC Public Health 9, 488 (2009)Google Scholar
  16. 16.
    Yasuda, H., Suzuki, K.: Measures against transmission of pandemic H1N1 influenza in Japan in 2009: simulation model. European Communicable Disease Bulletin 14 (2009)Google Scholar
  17. 17.
    Hsieh, Y., King, C., Chen, C., Ho, M., Hsu, S., Wu, Y.: Impact of quarantine on the 2003 SARS outbreak: A retrospective modeling study. Journal of Theoretical Biology 244, 729–736 (2007)CrossRefMathSciNetGoogle Scholar
  18. 18.
    Dan, Y., Tambyah, P., Sim, J., Lim, J., Hsu, L., Chow, W., Fisher, D., Wong, Y., Ho, K.: Cost-effectiveness Analysis of Hospital Infection Control Response to an Epidemic Respiratory Virus Threat. Emerging Infectious Disease 15, 1909–1916 (2009)CrossRefGoogle Scholar
  19. 19.
    Dasgupta, K., Menzies, D.: Cost-effectiveness of tuberculosis control strategies among immigrants and refugees. European Respiratory Journal 25, 1107 (2005)Google Scholar
  20. 20.
    Newman, M., Barabasi, A., Watts, D.: The structure and dynamics of networks. Princeton Univ. Pr., Princeton (2006)zbMATHGoogle Scholar
  21. 21.
    Pastor-Satorras, R., Vespignani, A.: Epidemic Spreading in Scale-Free Networks. Physical Review Letters 86, 3200 (2001)Google Scholar
  22. 22.
    Zheng, X.L., Zeng, D., Li, H.Q., Wang, F.Y.: Analyzing open-source software systems as complex networks. Physica A 387, 6190–6200 (2008)CrossRefGoogle Scholar
  23. 23.
    Yin, H., Rong, Z., Yan, G.: Development of friendship network among young scientists in an international Summer School. Physica A: Statistical Mechanics and its Applications 388, 3636–3642 (2009)CrossRefGoogle Scholar
  24. 24.
    Girvan, M., Newman, M.E.J.: Community structure in social and biological networks. Proceedings of the National Academy of Sciences of the United States of America 99, 7821–7826 (2002)CrossRefzbMATHMathSciNetGoogle Scholar
  25. 25.
    Danon, L., Arenas, A., Díaz-Guilera, A.: Impact of community structure on information transfer. Physical Review E 77, 036103 (2008)CrossRefGoogle Scholar
  26. 26.
    Wu, J.-j., Gao, Z.-y., Sun, H.-j.: Cascade and breakdown in scale-free networks with community structure. Physical Review E 74, 066111 (2006)CrossRefGoogle Scholar
  27. 27.
    Hethcote, H.: The mathematics of infectious diseases. SIAM Review 42, 599–653 (2000)CrossRefzbMATHMathSciNetGoogle Scholar
  28. 28.
    Tuite, A.R., Greer, A.L., Whelan, M., Winter, A.L., Lee, B., Yan, P., Wu, J., Moghadas, S., Buckeridge, D., Pourbohloul, B.: Estimated epidemiologic parameters and morbidity associated with pandemic H1N1 influenza. Canadian Medical Association Journal 182, 131 (2010)Google Scholar
  29. 29.
    Canini, L., Carrat, F.: Population Modeling of Influenza A/H1N1 Virus Kinetics and Symptom Dynamics. J. Virol. 85, 2764–2770 (2011)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Youzhong Wang
    • 1
  • Daniel Zeng
    • 1
    • 2
  • Zhidong Cao
    • 1
  • Yong Wang
    • 3
  • Hongbin Song
    • 3
  • Xiaolong Zheng
    • 1
  1. 1.The Key Laboratory of Complex Systems and Intelligence ScienceInstitute of Automation, Chinese Academy of SciencesBeijingChina
  2. 2.MIS DepartmentThe University of ArizonaTucsonU.S.A.
  3. 3.Institute of Disease Control and PreventionAcademy of Military Medical SciencesBeijingChina

Personalised recommendations