Simultaneous Non-gaussian Data Clustering, Feature Selection and Outliers Rejection
Conference paper
Abstract
A method for simultaneous non-Gaussian data clustering, feature selection and outliers rejection is proposed in this paper. The proposed approach is based on finite generalized Dirichlet mixture models learned within a framework including expectation-maximization updates for model parameters estimation and minimum message length criterion for model selection. Through a challenging application involving texture images discrimination, it is demonstrated that the developed procedure performs effectively in avoiding outliers and selecting relevant features.
Download
to read the full conference paper text
References
- 1.Fayyad, U., Piatetsky-Shapiro, G., Smyth, P.: Knowledge Discovery and Data Mining: Towards a Unifying Framework. In: Proc. of the Annual ACM SIGKDD Conference on Knowledge Discovery and Data Mining (KDD), pp. 82–88 (1996)Google Scholar
- 2.Law, M.H.C., Figueiredo, M.A.T., Jain, A.K.: Simultaneous Feature Selection and Clustering Using Mixture Models. IEEE Transactions on Pattern Analysis and Machine Intelligence 26(9), 1154–1166 (2004)CrossRefGoogle Scholar
- 3.Boutemedjet, S., Bouguila, N., Ziou, D.: A Hybrid Feature Extraction Selection Approach for High-Dimensional Non-Gaussian Data Clustering. IEEE Transactions on Pattern Analysis and Machine Intelligence 31(8), 1429–1443 (2009)CrossRefGoogle Scholar
- 4.Bouguila, N., Ziou, D.: High-Dimensional Unsupervised Selection and Estimation of a Finite Generalized Dirichlet Mixture Model Based on Minimum Message Length. IEEE Transactions on Pattern Analysis and Machine Intelligence 29(10), 1716–1731 (2007)CrossRefGoogle Scholar
- 5.Bouguila, N., Ziou, D.: A New Approach for High-Dimensional Unsupervised Learning: Applications to Image Restoration. In: Pal, S.K., Bandyopadhyay, S., Biswas, S. (eds.) PReMI 2005. LNCS, vol. 3776, pp. 200–205. Springer, Heidelberg (2005)CrossRefGoogle Scholar
- 6.Williams, C.K.I., Titsias, M.K.: Greedy Learning of Multiple Objects in Images using Robust Statistics and Factorial Learning. Neural Computation 16(5), 1039–1062 (2003)CrossRefMATHGoogle Scholar
- 7.Sudderth, E.B., Torralba, A., Freeman, W.T., Wilsky, A.S.: Depth from Familiar Objects: A Hierarchical Model for 3D Scenes. In: Proc. of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2410–2417 (2006)Google Scholar
- 8.Luettgen, M.R., Willsky, A.S.: Likelihood Calculation for a Class of Multiscale Stochastic Models, with Application to Texture Discrimination. IEEE Transactions on Image Processing 4(2), 194–207 (1995)CrossRefGoogle Scholar
- 9.Ojala, T., Valkealahti, K., Oja, E., Pietikäinen, M.: Texture Discrimination with Multidimensional Distributions of Signed Gray-Level Differences. Pattern Recognition 34, 727–739 (2001)CrossRefMATHGoogle Scholar
- 10.Ojala, T., Mäenpää, T., Viertola, J., Kyllönen, J., Pietikäinen, M.: Empirical Evaluation of MPEG-7 Texture Descriptors with a Large-Scale Experiment. In: Proc. of the 2nd International Workshop on Texture Analysis and Synthesis, pp. 99–102 (2002)Google Scholar
- 11.Varma, A., Zisserman, A.: Texture classification: are filter banks necessary? In. In: Proc. of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 691–698 (2003)Google Scholar
- 12.Hayman, E., Caputo, B., Fritz, M., Eklundh, J.-O.: On the significance of real-world conditions for material classification. In: Pajdla, T., Matas, J(G.) (eds.) ECCV 2004. LNCS, vol. 3024, pp. 253–266. Springer, Heidelberg (2004)CrossRefGoogle Scholar
Copyright information
© Springer-Verlag Berlin Heidelberg 2011