Combined Topological and Directional Relations Based Motion Event Predictions
Conference paper
Abstract
Spatial changes plays a fundamental role in modeling the spatio-temporal relations and spatio-temporal or motion event predictions. These predictions can be made through the conceptual neighborhood graph using the common sense continuity. This paper investigates that the extension in the temporal interval can effect the whole spatio-temporal relation and motion events. Spatio-temporal predicates form a unit of a motion event. We use the point temporal logic to extend the spatial predicates into the spatio-temporal or motion event predicates.
Keywords
Spatio-temporal relations Spatial predicates Spatio-temporal predictions motion events Download
to read the full conference paper text
References
- 1.Allen, J.F.: Maintaining Knowledge about Temporal Intervals. Communications of the ACM 26(11), 832–843 (1983)CrossRefMATHGoogle Scholar
- 2.Allen, J.F., Ferguson, G.: Actions and Events in Interval Temporal Logic. Journal of Logic and Computation 4, 531–579 (1994)MathSciNetCrossRefMATHGoogle Scholar
- 3.Cohn, A.G., Bennett, B., Gooday, J., Gotts, N.: RCC: a Calculus for Region-Based Qualitative Spatial Reasoning. GeoInformatica 1, 275–316 (1997)CrossRefGoogle Scholar
- 4.Cohn, A.G., Hazarika, S.M.: Qualitative Spatial Representation and Reasoning: An Overview. Fundamenta Informaticae 46(1-2), 1–29 (2001)MathSciNetMATHGoogle Scholar
- 5.Egenhofer, M., Mark, D.: Modeling Conceptual Neighborhoods of Topological Line-Region Relations. International Journal of Geographical Information Systems 9, 555–565 (1995)CrossRefGoogle Scholar
- 6.Egenhofer, M.J., Al-Taha, K.K.: Reasoning about Gradual Changes of Topological Relationships. In: Proceedings of the International Conference On GIS - From Space to Territory, pp. 196–219. Springer, London (1992)Google Scholar
- 7.Egenhofer, M.J., Franzosa, R.D.: Point Set Topological Relations. International Journal of Geographical Information Systems 5(2), 161–174 (1991)CrossRefGoogle Scholar
- 8.Erwig, M., Schneider, M., Hagen, F., Praktische Informatik Iv.: Spatio-Temporal Predicates. IEEE Transactions on Knowledge and Data Engineering 14, 881–901 (1999)Google Scholar
- 9.Galton, A.: A generalized topological view of motion in discrete space. Theor. Comput. Sci. 305(1-3), 111–134 (2003)MathSciNetCrossRefMATHGoogle Scholar
- 10.Goyal, R.K., Egenhofer, M.J.: Similarity of cardinal directions. In: Jensen, C.S., Schneider, M., Seeger, B., Tsotras, V.J. (eds.) SSTD 2001. LNCS, vol. 2121, pp. 36–58. Springer, Heidelberg (2001)CrossRefGoogle Scholar
- 11.Salamat, N., Zahzah, E.h.: 2D Fuzzy Spatial Relations: New Way of Computing and Representation, http://hal.archives-ouvertes.fr/hal-00551281/en/
- 12.Salamat, N., Zahzah, E.h.: On the improvement of Combined topological and Directional Relations Information, http://hal.archives-ouvertes.fr/hal-00551278/en/
- 13.Salamat, N., Zahzah, E.h.: Fusion of Fuzzy Spatial Relations. In: Proceedings of The 5th International Conference on Hybrid Artificial Intelligence Systems (HAIS (1)), pp. 294–301 (2010)Google Scholar
- 14.Salamat, N., Zahzah, E.h.: Fuzzy Spatial Relations For 2D Scene. In: Proceedings of The 2010 International Conference on Image Processing, Computer Vision, and Pattern Recognition (IPCV-2010), pp. 47–53 (2010)Google Scholar
Copyright information
© Springer-Verlag Berlin Heidelberg 2011