Adaptive Thresholding Methods for Documents Image Binarization

  • Bilal Bataineh
  • Siti N. H. S. Abdullah
  • K. Omar
  • M. Faidzul
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6718)

Abstract

Binarization process is easy when applying simple thresholding method onto good quality image. However, this task becomes difficult when it deals with degraded image. Most current binarization methods involve complex algorithm and less ability to recover important information from a degradation image. We introduce an adaptive binarization method to overcome the state of the art. This method also aims to solve the problem of the low contrast images and thin pen stroke problems. It can also enhance the effectiveness of solving all other problems. As well as, it does not need to specify the values of the factors manually. We compare the proposed method with known thresholding methods, which are Niblack, Sauvola, and NICK methods. The results show that the proposed method gave higher performance than previous methods.

Keywords

binarization document image thresholding method local binarization 

References

  1. 1.
    Kefali, A., Sari, T., Sellami, M.: Evaluation of several binarization techniques for old Arabic documents images. In: The First International Symposium on Modeling and Implementing Complex Systems MISC 2010, Constantine, Algeria, pp. 88–99 (2010)Google Scholar
  2. 2.
    Stathis, P., Kavallieratou, E., Papamarkos, N.: An Evaluation Technique for Binarization Algorithms. Journal of Universal Computer Science 14(18), 3011–3030 (2008)Google Scholar
  3. 3.
    Gatos, B., Pratikakis, I., Perantonis, S.J.: Adaptive degraded document image binarization. Pattern Recognition 39(3), 317–327 (2006)CrossRefMATHGoogle Scholar
  4. 4.
    Otsu, N.: A threshold selection method from gray-level histogram. IEEE Transactions on Systems, Man and Cybernetics 9(1), 62–66 (1979)CrossRefGoogle Scholar
  5. 5.
    Khurshid, K., Siddiqi, I., Faure, C., Vincent, N.: Comparison of Niblack inspired Binarization methods for ancient documents. In: 16th International conference on Document Recognition and Retrieval. SPIE, USA (2010)Google Scholar
  6. 6.
    Ntogas, N., Ventzas, D.: A Binarization Algorithm For Historical Manuscripts. In: Proceedings of the 12th WSEAS international conference on Communications, Heraklion, Greece, pp. 41–51 (2008)Google Scholar
  7. 7.
    Niblack, W.: An introduction to digital image processing (1985)Google Scholar
  8. 8.
    Sauvola, J., Seppanen, T., Haapakoski, S., Pietikainen, M.: Adaptive document binarization. In: Fourth International Conference Document Analysis and Recognition (ICDAR), Ulm, Germany (1997)Google Scholar
  9. 9.
    Gatos, B., Ntirogiannis, K., Pratikakis, I.: DIBCO 2009: document image binarization contest. International Journal on Document Analysis and Recognition (2009)Google Scholar
  10. 10.
    Gatos, B., Ntirogiannis, K., Pratikakis, I.: ICDAR 2009 Document Image Binarization Contest. In: 10Th International Conference on Document Analysis and Recognition, Beijing, China (2009)Google Scholar
  11. 11.
    Document Image Binarization Contest (DIBCO 2009), National Center for Scientific Research. Demokritos, Greece (September 2010), http://www.iit.demokritos.gr/~bgat/DIBCO2009/benchmark
  12. 12.
    Document Image Binarization Contest (DIBCO 2009), National Center for Scientific Research. Demokritos, Greece (September 2010), http://users.iit.demokritos.gr/~bgat/DIBCO2009/Evaluation.html

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Bilal Bataineh
    • 1
  • Siti N. H. S. Abdullah
    • 2
  • K. Omar
    • 3
  • M. Faidzul
    • 3
  1. 1.Center for Artificial Intelligence TechnologyMalaysia
  2. 2.Faculty of Information Science and TechnologyMalaysia
  3. 3.Universiti Kebangsaan MalaysiaBangiMalaysia

Personalised recommendations