Homogeneity Cues for Texel Size Estimation of Periodic and Near-Periodic Textures

  • Rocio A. Lizarraga-Morales
  • Raul E. Sanchez-Yanez
  • Victor Ayala-Ramirez
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6718)

Abstract

Texel size determination on periodic and near-periodic textures, is a problem that has been addressed for years, and currently it remains as an important issue in structural texture analysis. This paper proposes an approach to determine the texel size based on the computation and analysis of the texture homogeneity properties. We analyze the homogeneity feature computed from difference histograms, while varying the displacement vector for a preferred orientation. As we vary this vector, we expect a maximum value in the homogeneity data if its magnitude matches the texel size in a given orientation. We show that this approach can be used for both periodic and near-periodic textures, it is robust to noise and blur perturbations, and its advantages over other approaches in computation time and memory storage.

Keywords

Texel size detection Textural periodicity Difference histogram Similarity test 

References

  1. 1.
    Brodatz, P.: Textures: A Photographic Album for Artists and Designers. Dover Publications, New York (1966)Google Scholar
  2. 2.
    Forsyth, D.: Shape from texture without boundaries. In: Heyden, A., Sparr, G., Nielsen, M., Johansen, P. (eds.) ECCV 2002. LNCS, vol. 2352, pp. 225–239. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  3. 3.
    Grigorescu, S., Petkov, N.: Texture analysis using Renyi’s generalized entropies. In: Proc. of the IEEE (ICIP 2003), vol. 1, pp. 241–244. IEEE, Los Alamitos (2003)Google Scholar
  4. 4.
    Gui, Y., Ma, L.: Periodic pattern of texture analysis and synthesis based on texels distribution. The Visual Computer 26(6-8), 951–964 (2010)CrossRefGoogle Scholar
  5. 5.
    Haralick, R.: Statistical and Structural Approaches to texture. In: Proc. on the IEEE 4th. Int. Joint Conf. Pattern Recognition, pp. 45–60 (1979)Google Scholar
  6. 6.
    Jan, S.R., Hsueh, Y.C.: Window-size determination for granulometrical structural texture classification. Pattern Recogn. Lett. 19(5-6), 439–446 (1998)CrossRefMATHGoogle Scholar
  7. 7.
  8. 8.
    Lee, K.L., Chen, L.H.: A new method for extracting primitives of regular textures based on wavelet transform. Int. J. of Patt. Recogn. and Artif. Intell. 16, 1–25 (2002)CrossRefGoogle Scholar
  9. 9.
    Leu, J.G.: On indexing the periodicity of image textures. Image and Vision Computing 19(13), 987–1000 (2001)CrossRefGoogle Scholar
  10. 10.
    Lin, W.C., Hays, J., Wu, C., Liu, Y., Kwatra, V.: Quantitative Evaluation of Near Regular Texture Synthesis Algorithms. In: IEEE Computer Society Conf. on Computer Vision and Pattern Recognition , vol. 18(5), pp. 427–434 (2006)Google Scholar
  11. 11.
    Liu, Y., Lin, W.C., Hays, J.: Near-regular texture analysis and manipulation. In: SIGGRAPH 2004, pp. 368–376. ACM Press, New York (2004)Google Scholar
  12. 12.
    Lizarraga-Morales, R.A., Sanchez-Yanez, R.E., Ayala-Ramirez, V.: Optimal spatial predicate determination of a local binary pattern. In: Proc. of the (VIIP 2009), pp. 41–46. Acta Press (2009)Google Scholar
  13. 13.
    Lobay, A., Forsyth, D.: Recovering shape and irradiance maps from rich dense texton fields. In: Proc. of the (CVPR 2004) , pp. 400–406 (2004)Google Scholar
  14. 14.
    Menegaz, G., Franceschetti, A., Mecocci, A.: Fully automatic perceptual modeling of near regular textures. In: SPIE Human Vision and Electronic Imaging XII, vol. 6492, pp.64921B.1–64921B.12. SPIE, San Jose (2007)Google Scholar
  15. 15.
    Ngan, H.Y.Y., Pang, G.K.: Regularity analysis for patterned texture inspection. IEEE Trans. on Automation Science and Engineering 6(1), 131–144 (2009)CrossRefGoogle Scholar
  16. 16.
    Oh, G., Lee, S., Shin, S.Y.: Fast determination of textural periodicity using distance matching function. Pattern Recogn. Lett. 20(2), 191–197 (1999)CrossRefMATHGoogle Scholar
  17. 17.
    Selkainaho, K., Parkkinen, J., Oja, E.: Comparison of χ 2 and κ statistics in finding signal and picture periodicity. In: Proc. 9th Int. Conf. Patt. Recogn., pp. 1221–1224 (1988)Google Scholar
  18. 18.
    Todorovic, S., Ahuja, N.: Texel-Based texture Segmentation. In: Proc. of the (ICCV 2009), pp. 841–848 (2009)Google Scholar
  19. 19.
    Unser, M.: Sum and difference histograms for texture classification. IEEE Trans. on Pattern Anal. Mach. Intell. 8(1), 118–125 (1986)CrossRefGoogle Scholar
  20. 20.
    Liu, Y., Tsin, Y., Lin, W.C.: The Promise and Perils of Near-Regular Texture. Int. J. of Computer Vision 62(1-2), 145–159 (2005)CrossRefGoogle Scholar
  21. 21.
    Zhang, J., Tan, T.: Brief review of invariant texture analysis methods. Pattern Recognition 35, 735–747 (2002)CrossRefMATHGoogle Scholar
  22. 22.
    Zhu, S., Guo, C., Wang, Y., Xu, Z.: What are Textons? Int. J. of Computer Vision 62, 121–143 (2005)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Rocio A. Lizarraga-Morales
    • 1
  • Raul E. Sanchez-Yanez
    • 1
  • Victor Ayala-Ramirez
    • 1
  1. 1.Universidad de Guanajuato DICISSalamancaMexico

Personalised recommendations