On Trend Association Analysis of Time Series of Atmospheric Pollutants and Meteorological Variables in Mexico City Metropolitan Area

  • Victor Almanza
  • Ildar Batyrshin
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6718)

Abstract

The paper studies trend associations between atmospheric pollutants and meteorological variables time series of Mexico City Metropolitan Area (MCMA) by applying the Moving Approximation Transform (MAP). This recently introduced technique measures and visualizes associations of the dynamics between different time series in the form of an association network. The paper studies associations between 5 atmospheric pollutants (SO2, O3, NO2, NOx and PM2.5) and 7 meteorological variables (mean wind velocity, minimum, average and maximum values of both temperature and relative humidity) measured daily during one year in three meteorological stations located in different zones of MCMA. These associations were studied for 4 seasons characterized by different meteorological conditions. For considered stations atmospheric pollutants and meteorological variables for different seasons positive and negative associations have been found and explained.

Keywords

Time series data mining trend associations MAP transform atmospheric pollutants 

References

  1. 1.
    Roberts, S.: Biologically Plausible Particulate Air Pollution Mortality Concentration-Response Functions. Environ. Health Perspect. 112(3), 309–313 (2004)CrossRefGoogle Scholar
  2. 2.
    Samoli, E., Analitis, A., Touloumi, G., Schwartz, J., Anderson, H.R., Sunyer, J., et al.: Estimating the Exposure–Response Relationships between Particulate Matter and Mortality within the APHEA Multicity Project. Environ. Health Perspect. 113, 88–95 (2005)CrossRefGoogle Scholar
  3. 3.
    Galán, I., Tobías, A., Banegas, J.R., Aránguez, E.: Short-Term Effects of Air Pollution on daily Asthma Emergency Room Admissions. Eur. Respir. J. 22, 802–808 (2003)CrossRefGoogle Scholar
  4. 4.
    Heo, J.K., Kim, D.S.: A New Method of Ozone Forecasting using Fuzzy Expert and Neural Network Systems. Sci. Total Environ. 325, 221–237 (2004)CrossRefGoogle Scholar
  5. 5.
    Kukkonen, J., Partanen, L., Karppinen, A., Ruuskanen, J., Junninen, H., Kolehmainen, M., Niska, H., Dorling, S., Chatterton, T., Foxall, R., Cawley, G.: Extensive Evaluation of Neural Network Models for the Prediction of NO2 and PM10 Concentrations, compared with a Deterministic Modelling System and Measurements in Central Helsinki. Atm. Env. 37, 4539–4550 (2003)CrossRefGoogle Scholar
  6. 6.
    Chaloulakou, A., Saisana, M., Spyrellis, N.: Comparative Assessment of Neural Networks and Regression Models for Forecasting Summertime Ozone in Athens. Sci.Tot. Environ. 313, 1–13 (2003)CrossRefGoogle Scholar
  7. 7.
    Liu, Z., Lai, Y.C., Lopez, J.M.: Noise-induced Enhancement of Chemical Reactions in Nonlinear Flows. Chaos. 12(2), 417–425 (2002)MathSciNetCrossRefMATHGoogle Scholar
  8. 8.
    Cheng, W., Kuo, Y., Lin, P., Chang, K., Chen, Y., Lin, T., Huang, R.: Revised Air Quality Index Derived from an Entropy Function. Atmos. Environ. 38, 383–391 (2004)CrossRefGoogle Scholar
  9. 9.
    Dillner, A.M.: A Quantitative Method for Clustering Size Distributions of Elements. Atm. Env. 39, 1525–1537 (2005)CrossRefGoogle Scholar
  10. 10.
    Hyvönen, S., Junninen, H., Laakso, L., Dal Maso, M., Grönholm, T., Bonn, B., Keronen, P., Aalto, P., Hiltunen, V., Pohja, T., Launiainen, S., Hari, P., Mannila, H., Kulmala, M.: A Look at Aerosol Formation Using Data Mining Techniques. Atmos Chem. Phys. Discuss. 5, 7577–7611 (2005)CrossRefGoogle Scholar
  11. 11.
    Molina, M., Molina, L.: Megacities and Atmospheric Pollution. J. Air Waste Manage. Assoc. 54, 644–680 (2004)CrossRefGoogle Scholar
  12. 12.
    Batyrshin, I., Herrera-Avelar, R., Sheremetov, L., Panova, A.: Association Networks in Time Series Data Mining. In: NAFIPS 2005 Soft Computing for Real World Applications, Ann Arbor, Michigan, USA, pp. 754–759 (2005)Google Scholar
  13. 13.
    Edgerton, S.A., Bian, X., Doran, J.C., Fast, J.D., Hubbe, J.M., Malone, E.L., Shaw, W.J., Whiteman, C.D., Zhong, S., Arriaga, J.L., Ortiz, E., Ruiz, M., Sosa, G., Vega, E., Limon, T., Guzman, F., Archuleta, J., Bossert, J.E., Elliot, S.M., Lee, J.T., McNair, L.A., Chow, J.C., Watson, J.G., Coulter, R.L., Doskey, V.: Particulate Air Pollution in Mexico City: A Collaborative Research Project. J. Air Waste M. A. 49(10), 1221–1229 (1999)CrossRefGoogle Scholar
  14. 14.
    Harrison, R., Deacon, A., Jones, M., Appleby, R.: Sources and Processes Affecting Concentrations of PM10 and PM2.5 Particulate Matter in Birmingham (U.K). Atm. Env. 31(24), 4103–4117 (1997)CrossRefGoogle Scholar
  15. 15.
    Chow, J.C., Watson, J.G., Edgerton, S.A., Vega, E.: Chemical Composition of PM2.5 and PM10 in Mexico City During Winter 1997. Sci. Tot. Environ. 287, 177–201 (2002)CrossRefGoogle Scholar
  16. 16.
    Tai, A., Mickley, L., Jacob, D.: Correlations Between Fine Particulate Matter (PM2.5) and Meteorological Variables in the United States: Implications for the sensitivity of PM2.5 to Climate Change. Atm. Env. 44, 3976–3984 (2010)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Victor Almanza
    • 1
  • Ildar Batyrshin
    • 1
  1. 1.Mexican Institute of PetroleumMexico CityMexico

Personalised recommendations