Combining Contrast Information and Local Binary Patterns for Gender Classification

  • Juha Ylioinas
  • Abdenour Hadid
  • Matti Pietikäinen
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6688)

Abstract

Recent developments in face analysis showed that local binary patterns (LBP) provide excellent results in representing faces. LBP is by definition a purely gray-scale invariant texture operator, codifying only the facial patterns while ignoring the magnitude of gray level differences (i.e. contrast). However, pattern information is independent of the gray scale, whereas contrast is not. On the other hand, contrast is not affected by rotation, but patterns are, by default. So, these two measures can supplement each other. This paper addresses how well facial images can be described by means of both contrast information and local binary patterns. We investigate a new facial representation which combines both measures and extensively evaluate the proposed representation on the gender classification problem, showing interesting results. Furthermore, we compare our results against those of using Haar-like features and AdaBoost learning, demonstrating improvements with a significant margin.

Keywords

Texture Features Local Binary Patterns Contrast Gender Classification 

References

  1. 1.
    Ojala, T., Pietikäinen, M., Mäenpää, T.: Multiresolution gray-scale and rotation invariant texture classification with local binary patterns. IEEE Transactions on Pattern Analysis and Machine Intelligence 24(7), 971–987 (2002)CrossRefMATHGoogle Scholar
  2. 2.
    Ahonen, T., Hadid, A., Pietikäinen, M.: Face description with local binary patterns: Application to face recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence 28(12), 2037–2041 (2006)CrossRefMATHGoogle Scholar
  3. 3.
    Hadid, A., Zhao, G., Ahonen, T., Pietikäinen, M.: Face analysis using local binary patterns. In: Mirmehdi, M., Xie, X., Suri, J. (eds.) Handbook of Texture Analysis, pp. 347–373. Imperial College Press, LondonGoogle Scholar
  4. 4.
    Hadid, A., Pietikäinen, M., Ahonen, T.: A discriminative feature space for detecting and recognizing faces. In: IEEE Conference on Computer Vision and Pattern Recognition, vol. II, pp. 797–804 (2004)Google Scholar
  5. 5.
    Shan, C., Gong, S., McOwan, P.: Facial expression recognition based on local binary patterns:a comprehensive study. Image and Vision Computing 27(6), 803–816 (2009)CrossRefGoogle Scholar
  6. 6.
    Yang, Z., Ai, H.: Demographic classification with local binary patterns. In: International Conference on Biometrics, pp. 464–473 (2007)Google Scholar
  7. 7.
    Moghaddam, B., Yang, M.H.: Learning gender with support faces. IEEE Transactions on Pattern Analysis and Machine Intelligence 24(5), 707–711 (2002)CrossRefGoogle Scholar
  8. 8.
    Baluja, S., Rowley, H.: Boosting sex identification performance. International Journal of Computer Vision 71, 111–119 (2007)CrossRefGoogle Scholar
  9. 9.
    Mäkinen, E., Raisamo, R.: Evaluation of gender classification methods with automatically detected and aligned faces. IEEE Transactions on Pattern Analysis and Machine Intelligence 30(3), 541–547 (2008)CrossRefGoogle Scholar
  10. 10.
    Phillips, P.J., Flynn, P.J., Scruggs, T., Bowyer, K.W., Chang, J., Hoffman, K., Marques, J., Min, J., Worek, W.: Overview of the face recognition grand challenge. In: IEEE Computer Society Conference on Computer Vision and Pattern Recognition 2005 (CVPR 2005), pp. 947–954 (2005)Google Scholar
  11. 11.
    Phillips, P.J., Wechsler, H., Huang, J., Rauss, P.: The FERET database and evaluation procedure for face recognition algorithms. Image and Vision Computing 16(10), 295–306 (1998)CrossRefGoogle Scholar
  12. 12.
    Messer, K., Matas, J., Kittler, J., Luettin, J., Maitre, G.: XM2VTSDB: The extended M2VTS database. In: Second International Conference on Audio- and Video-based Biometric Person Authentication 1999 (AVBPA 1999), pp. 72–77 (1999)Google Scholar
  13. 13.
    Chang, C.-C., Lin, C.-J.: LIBSVM: a library for support vector machines (2001), Software, available at http://www.csie.ntu.edu.tw/~cjlin/libsvm
  14. 14.
    Tan, X., Triggs, B.: Enhanced local texture feature sets for face recognition under difficult lighting conditions. IEEE Transactions on Image Processing 19(6), 1635–1650 (2010)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Huang, G.B., Ramesh, M., Berg, T., Learned-Miller, E.: Labeled Faces in the Wild: A Database for Studying Face Recognition in Unconstrained Environments. University of Massachusetts, Amherst, Technical Report 07-49 (2007)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Juha Ylioinas
    • 1
  • Abdenour Hadid
    • 1
  • Matti Pietikäinen
    • 1
  1. 1.Machine Vision GroupUniversity of OuluFinland

Personalised recommendations