A Free-Viewpoint Virtual Mirror with Marker-Less User Interaction

  • Matthias Straka
  • Stefan Hauswiesner
  • Matthias Rüther
  • Horst Bischof
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6688)

Abstract

We present a Virtual Mirror system which is able to simulate a physically correct full-body mirror on a monitor. In addition, users can freely rotate the mirror image which allows them to look at themselves from the side or from the back, for example. This is achieved through a multiple camera system and visual hull based rendering. A real-time 3D reconstruction and rendering pipeline enables us to create a virtual mirror image at 15 frames per second on a single computer. Moreover, it is possible to extract a three dimensional skeleton of the user which is the basis for marker-less interaction with the system.

Keywords

Virtual Mirror Shape-from-Silhouette CUDA Markerless User-Interaction Free-Viewpoint Video 

References

  1. 1.
    Allard, J., Franco, J.S., Ménier, C., Boyer, E., Raffin, B.: The GrImage Platform: A Mixed Reality Environment for Interactions. In: Proc. of the International Conference on Computer Vision Systems (2006)Google Scholar
  2. 2.
    Darrell, T., Gordon, G., Woodfill, J., Harville, M.: A virtual mirror interface using real-time robust face tracking. In: Proc. of the International Conference on Automatic Face and Gesture Recognition (1998)Google Scholar
  3. 3.
    De Aguiar, E., Stoll, C., Theobalt, C., Ahmed, N., Seidel, H.P., Thrun, S.: Performance capture from sparse multi-view video. In: Proc. of ACM SIGGRAPH (2008)Google Scholar
  4. 4.
    Eisert, P., Rurainsky, J., Fechteler, P.: Virtual mirror: Real-time tracking of shoes in augmented reality environments. In: Proc. of the ICIP (2007)Google Scholar
  5. 5.
    Fiala, M.: Magic mirror system with hand-held and wearable augmentations. In: Proc. of the IEEE Virtual Reality Conference, pp. 251–254 (2007)Google Scholar
  6. 6.
    François, A.R., Kang, E.: A handheld mirror simulation. In: Proc. of the International Conference on Multimedia and Expo., vol. 2, pp. 745–748 (2003)Google Scholar
  7. 7.
    Hauswiesner, S., Straka, M., Reitmayr, G.: Coherent image-based rendering of real-world objects. In: Proc. of the Symposium on Interactive 3D Graphics (2011)Google Scholar
  8. 8.
    Hilsmann, A., Eisert, P.: Realistic cloth augmentation in single view video. In: Proc. of Vison, Modelling, and Visualization Workshop, pp. 55–62 (2009)Google Scholar
  9. 9.
    Matusik, W., Buehler, C., Raskar, R., Gortler, S., McMillan, L.: Image-based visual hulls. In: Proc. of ACM SIGGRAPH, pp. 369–374 (2000)Google Scholar
  10. 10.
    Nickolls, J., Dally, W.: The GPU computing era. IEEE Micro 30(2), 56–69 (2010), doi:10.1109/MM.2010.41Google Scholar
  11. 11.
    Ray-Ban Sunglasses: Virtual mirror, from http://www.ray-ban.com/usa/science/virtual-mirror (retrieved March 14, 2011)
  12. 12.
    Rodriguez, A., Ehlenberger, D., Hof, P., Wearne, S.L.: Three-dimensional neuron tracing by voxel scooping. Journal of Neuroscience Methods 184(1), 169–175 (2009), doi:10.1016/j.jneumeth.2009.07.021CrossRefGoogle Scholar
  13. 13.
    Schick, A., Stiefelhagen, R.: Real-time GPU-based voxel carving with systematic occlusion handling. In: Denzler, J., Notni, G., Süße, H. (eds.) Pattern Recognition. LNCS, vol. 5748, pp. 372–381. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  14. 14.
    Starck, J., Hilton, A.: Surface capture for performance based animation. IEEE Computer Graphics and Applications 27(3), 21–31 (2007)CrossRefGoogle Scholar
  15. 15.
    Tilley, A.R., Dreyfuss, H.: The Measure of Man & Woman. John Wiley & Sons, Chichester (2002)Google Scholar
  16. 16.
    Tzevanidis, K., Zabulis, X., Sarmis, T., Koutlemanis, P., Kyriazis, N., Argyros, A.: From multiple views to textured 3D meshes: a GPU-powered approach. In: Proc. of the Computer Vision on GPUs Workshop, CVGPU (2010)Google Scholar
  17. 17.
    del Valle, A.C.A., Opalach, A.: Enhanced reflection to encourage healthy living. In: Proc. of UbiComp Workshop: Monitoring, Measuring, and Motivating (2005)Google Scholar
  18. 18.
    Waizenegger, W., Feldmann, I., Eisert, P., Kauff, P.: Parallel high resolution real-time visual hull on GPU. In: Proc. of ICIP (2009)Google Scholar
  19. 19.
    Werghi, N., Xiao, Y., Siebert, J.P.: A functional-based segmentation of human body scans in arbitrary postures. IEEE Transactions on Systems, Man and Cybernetic 26(1), 153–165 (2006)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Matthias Straka
    • 1
  • Stefan Hauswiesner
    • 1
  • Matthias Rüther
    • 1
  • Horst Bischof
    • 1
  1. 1.Institute for Computer Graphics and VisionGraz University of TechnologyGrazAustria

Personalised recommendations