Using the Skeleton for 3D Object Decomposition
Conference paper
Abstract
An object decomposition method is presented, which is guided by a suitable partition of the skeleton. The method is easy to implement, has a limited computational cost and produces results in agreement with human intuition.
Keywords
Branch Point Spectral Cluster Adjacent Part Object Part Skeleton Curve
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
Download
to read the full conference paper text
References
- 1.Palmer, S.E.: Hierarchical structure in perceptual representation. Cognitive Psychology 9, 441–474 (1977)CrossRefGoogle Scholar
- 2.Marr, D., Nishihara, H.K.: Representation and recognition of three-dimensional shapes. Proc. Royal Society of London: Series B 200, 269–294 (1978)CrossRefGoogle Scholar
- 3.Hoffman, D.D., Richards, W.A.: Parts of recognition. Cognition 18, 65–96 (1984)CrossRefGoogle Scholar
- 4.Biederman, I.: Recognition-by-components: A theory of human image understanding. Psychological Review 94, 115–147 (1987)CrossRefGoogle Scholar
- 5.Cornea, N.D., Silver, D., Yuan, X., Balasubramanian, R.: Computing hierarchical curve-skeletons of 3D objects. The Visual Computer 21(11), 945–955 (2005)CrossRefGoogle Scholar
- 6.Lien, J.-M., Geyser, J., Amato, N.M.: Simultaneous shape decomposition and skeletonization. In: Proc. 2006 ACM Symposium on Solid and Physical Modeling, pp. 219–228 (2006)Google Scholar
- 7.Reniers, D., Telea, A.: Skeleton-based hierarchical shape segmentation. In: Proc. IEEE Int. Conf. on Shape Modeling and Applications, pp. 179–188 (2007)Google Scholar
- 8.Serino, L., Sanniti di Baja, G., Arcelli, C.: Object decomposition via curvilinear skeleton partition. In: Proc. ICPR 2010, pp. 4081–4084. IEEE, Los Alamitos (2010)Google Scholar
- 9.Svensson, S., Sanniti di Baja, G.: Using distance transforms to decompose 3D discrete objects. Image and Vision Computing 20, 529–540 (2002)CrossRefGoogle Scholar
- 10.Zhang, X., Liu, J., Jaeger, M., Li, Z.: Volume decomposition for hierarchical skeletonization. Int. J. Virtual Reality 8(1), 89–97 (2009)Google Scholar
- 11.de Goes, F., Goldenstein, S., Velho, L.: A hierarchical segmentation of articulated bodies. Computer Graphics Forum 27(5), 1349–1356 (2008)CrossRefGoogle Scholar
- 12.Liu, R., Zhang, H.: Segmentation of 3D meshes through spectral clustering. In: Proc. 12th Pacific Conf. on Computer Graphics and Applications, pp. 298–305 (2004)Google Scholar
- 13.Huang, Q.-X., Wicke, M., Adams, B., Guibas, L.: Shape decomposition using modal analysis. Computer Graphics Forum 28(2), 407–416 (2009)CrossRefGoogle Scholar
- 14.Bischoff, S., Kobbelt, L.: Ellipsoid decomposition of 3D models. In: Proc. Int. Symp. 3D Data Processing Visualization and Transmission, pp. 480–488 (2002)Google Scholar
- 15.Mortara, M., Patanè, G., Spagnuolo, M., Falcidieno, B., Rossignac, J.: Plumber: a method for a multi-scale decomposition of 3D shapes into tubular primitives and bodies. In: Proc. 9th ACM Symp. on Solid Modeling and Applications, pp. 339–344 (2004)Google Scholar
- 16.Borgefors, G.: On digital distance transform in three dimensions. CVIU 64(3), 368–376 (1996)Google Scholar
- 17.Blum, H.: Biological shape and visual science. J. Theor. Biol. 38, 205–287 (1973)CrossRefGoogle Scholar
- 18.Siddiqi, K., Pizer, S.M. (eds.): Medial Representations: Mathematics, Algorithms and Applications. Springer, Heidelberg (2008)MATHGoogle Scholar
- 19.Arcelli, C., Sanniti di Baja, G., Serino, L.: Distance driven skeletonization in voxel images. IEEE Trans. PAMI, http://doi.ieeecomputersociety.org/10.1109/TPAMI.2010.140
- 20.Borgefors, G., Sanniti di Baja, G.: Analyzing non-convex 2D and 3D patterns. CVIU 63(1), 145–157 (1996)Google Scholar
- 21.AIM@SHAPE Shape Repository, http://shapes.aimatshape.net/viewmodels.php
- 22.Shilane, P., Min, P., Kazhdan, M., Funkhouser, T.: The Princeton Shape Benchmark. Shape Modeling International, Genova, Italy (June 2004)Google Scholar
Copyright information
© Springer-Verlag Berlin Heidelberg 2011