Real-Time Detection of Landscape Scenes

  • Sami Huttunen
  • Esa Rahtu
  • Iivari Kunttu
  • Juuso Gren
  • Janne Heikkilä
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6688)

Abstract

In this paper we study different approaches that can be used in recognizing landscape scenes. The primary goal has been to find an accurate but still computationally light solution capable of real-time operation. Recognizing landscape images can be thought of a special case of scene classification. Even though there exist a number of different approaches concerning scene classification, there are no other previous works that try to classify images into such high level categories as landscape and non-landscape. This study shows that a global texture-based approach outperforms other more complex methods in the landscape image recognition problem. Furthermore, the results obtained indicate that the computational cost of the method relying on Local Binary Pattern representation is low enough for real-time systems.

Keywords

computational imaging scene classification image categorization 

References

  1. 1.
    Bianco, S., Ciocca, G., Cusano, C., Schettini, R.: Improving color constancy using indoor–outdoor image classification. IEEE TIP 17(12), 2381–2392 (2008)MathSciNetGoogle Scholar
  2. 2.
    Bosch, A., Munoz, X., Marti, R.: Which is the best way to organize/classify images by content? Image and Vision Computing 25(6), 778–791 (2007)CrossRefGoogle Scholar
  3. 3.
    Chung, D., Kim, S., Bae, J., Lee, S.: Photographic expert-like capturing by analyzing scenes with representative image set. In: Casasent, D.P., Hall, E.L., Röning, J. (eds.) Proc. SPIE, vol. 7252 (2009)Google Scholar
  4. 4.
    Csurka, G., Dance, C., Fan, L., Willamowski, J., Bray, C.: Visual categorization with bags of keypoints. In: Proc. Workshop on Statistical Learning in Computer Vision, ECCV, vol. 1, p. 22 (2004)Google Scholar
  5. 5.
    Datta, R., Joshi, D., Li, J., Wang, J.Z.: Image retrieval: Ideas, influences, and trends of the new age. ACM Computing Surveys 40(2), 5:1–5:60 (2008)CrossRefGoogle Scholar
  6. 6.
    Everingham, M., Van Gool, L., Williams, C.K.I., Winn, J., Zisserman, A.: The PASCAL Visual Object Classes Challenge 2007 (VOC2007) Results (2007), http://www.pascal-network.org/challenges/VOC/voc2007/workshop/
  7. 7.
    Flickr: Flickr homepage (2010), http://www.flickr.com/search/?q=landscape
  8. 8.
    Kim, W., Park, J., Kim, C.: A novel method for efficient indoor-outdoor image classification. Journal of Signal Processing Systems 61, 251–258 (2010)CrossRefGoogle Scholar
  9. 9.
    Lazebnik, S., Schmid, C., Ponce, J.: Beyond bags of features: Spatial pyramid matching for recognizing natural scene categories. In: Proc. IEEE CVPR, vol. 2, pp. 2169–2178 (2006)Google Scholar
  10. 10.
    Lipowezky, U., Vol, I.: Indoor-outdoor detector for mobile phone cameras using gentle boosting. In: Proc. IEEE CVPR Workshops (CVPRW). pp. 31–38 (2010)Google Scholar
  11. 11.
    Lowe, D.: Distinctive image features from scale-invariant keypoints. IJCV 60(2), 91–110 (2004)CrossRefGoogle Scholar
  12. 12.
    Ojala, T., Pietikäinen, M., Harwood, D.: A comparative study of texture measures with classification based on featured distributions. Pattern Recognition 29(1), 51–59 (1996)CrossRefGoogle Scholar
  13. 13.
    Oliva, A., Torralba, A.: Modeling the shape of the scene: A holistic representation of the spatial envelope. IJCV 42(3), 145–175 (2001)CrossRefMATHGoogle Scholar
  14. 14.
    Payne, A., Singh, S.: Indoor vs. outdoor scene classification in digital photographs. Pattern Recognition 38(10), 1533–1545 (2005)CrossRefGoogle Scholar
  15. 15.
    Serrano, N., Savakis, A., Luo, A.: A computationally efficient approach to indoor/outdoor scene classification. In: Proc. IEEE ICPR, vol. 4, pp. 146–149 (2002)Google Scholar
  16. 16.
    Szummer, M., Picard, R.W.: Indoor-outdoor image classification. In: Proc. IEEE Workshop on Content-Based Access of Image and Video Database, pp. 42–51 (1998)Google Scholar
  17. 17.
    Vailaya, A., Figueiredo, M.A.T., Jain, A.K., Zhang, H.J.: Image classification for content-based indexing. IEEE TIP 10(1), 117–130 (2001)MATHGoogle Scholar
  18. 18.
    van de Sande, K.E.A., Gevers, T., Snoek, C.G.M.: Evaluating color descriptors for object and scene recognition. IEEE TPAMI 32(9), 1582–1596 (2010)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Sami Huttunen
    • 1
  • Esa Rahtu
    • 1
  • Iivari Kunttu
    • 2
  • Juuso Gren
    • 2
  • Janne Heikkilä
    • 1
  1. 1.Machine Vision GroupUniversity of OuluFinland
  2. 2.Nokia CorporationTampereFinland

Personalised recommendations