Abstract

This paper is devoted to hierarchies of partitions, on which all criteria are proved to be connective. Optimisations are addressed by minimizing energies that satisfy the condition of hierarchical increasingness. The optimal cuts through the hierarchies are found. It is shown that many of the classical techniques are variants of what is proposed.

Keywords

Complete Lattice Mathematical Morphology Separable Energy Integral Geometry Ultrametric Space 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Angulo, J., Serra, J.: Modeling and segmentation of colour images in polar representations. Image and Vision Computing 25, 475–495 (2007)CrossRefGoogle Scholar
  2. 2.
    Arbelaez, P., Cohen, L.D.: Segmentation d’images couleur par partitions de Voronoï. Traitement du Signal 21(5), 407–421 (2004)MATHGoogle Scholar
  3. 3.
    Benzécri, J.P.: L’Analyse des Données. Tome I: La Taxinomie, Dunod, Paris, 4e édition (1984)Google Scholar
  4. 4.
    Diday, E., Lemaire, J., Pouget, J., Testu, F.: Eléments d’analyse des données, Dunod, Paris (1982)Google Scholar
  5. 5.
    Guigues, L., Cocquerez, J.P., Le Men, H.: Scale-Sets Image Analysis. Int. Journal of Computer Vision 68(3), 289–317 (2006)CrossRefGoogle Scholar
  6. 6.
    Guigues, L.: Modèles multi-échelles pour la segmentation d’images. Thèse doctorale Université de Cergy-Pontoise, décembre (2003)Google Scholar
  7. 7.
    Marr, D.: Vision. Freeman and Co., New York (1982)Google Scholar
  8. 8.
    Matheron, G.: Random Sets and Integral Geometry. Wiley, New-York (1975)MATHGoogle Scholar
  9. 9.
    Meyer, F., Najman, L.: Segmentation, Minimum Spanning Trees, and Hierarchies. In: Najman, L., Talbot (eds.) Mathematical Morphology. Wiley, N.Y. (2010)Google Scholar
  10. 10.
    Najman, L.: Ultrametric watersheds. In: Wilkinson, M.H.F., Roerdink, B.T.M. (eds.) ISMM 2009. LNCS, vol. 5720, pp. 181–192. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  11. 11.
    Najman, L.: Ultrametric watersheds: a bijection theorem for hierarchical edge-segmentation. In: JMIV (to appear, 2011)Google Scholar
  12. 12.
    Noyel, G., Angulo, J., Jeulin, D.: On distances, paths and connections for hyperspectral image segmentation. In: Proceedings of the 8th International Symposium on Mathematical Morphology, Rio de Janeiro, Brazil, October 10-13. MCT/INPE, vol. 1, pp. 399–410 (2007)Google Scholar
  13. 13.
    Ronse, C.: Partial partitions, partial connections and connective segmentation. Journal of Mathematical Imaging and Vision 32, 97–125 (2008)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Ronse, C.: Adjunctions on the lattices of partitions and of partial partitions. AAECC 21(5), 343–396 (2010)MathSciNetCrossRefMATHGoogle Scholar
  15. 15.
    Ronse, C.: Idempotent block splitting on partial partitions, I: isotoneoperators, II: non-isotone operators Order (to appear, 2011)Google Scholar
  16. 16.
    Salembier, P., Garrido, L.: Binary Partition Tree as an Efficient Representation for Image Processing, Segmentation, and Information Retrieval. IEEE Trans. on Image Processing 9(4), 561–576 (2000)CrossRefGoogle Scholar
  17. 17.
    Serra, J.: Ordre de la construction et segmentations hié rarchiques. Colloque ESIEE (April 2, 2010), http://laurentnajman.org/serra70/index
  18. 18.
    Soille, P.: Constrained connectivity for hierarchical image partitioning and simplification. IEEE Transactions on Pattern Analysis and Machine Intelligence 30, 1132–1145 (2008)CrossRefGoogle Scholar
  19. 19.
    Soille, P., Grazzini, J.: Constrained Connectivity and Transition Regions. In: Wilkinson, M.H.F., Roerdink, B.T.M. (eds.) Mathematical Morphlology and its Applications to Signal and Image Processing, pp. 59–70. Springer, Heidelberg (2009)Google Scholar
  20. 20.
    Zanoguera, F., Marcotegui, B., Meyer, F.: A toolbox for interactive segmentation based on nested partitions. In: Proc. of ICIP 1999, Kobe, Japan (1999)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Jean Serra
    • 1
  1. 1.Université Paris-EstNoisy-le-GrandFrance

Personalised recommendations