Circular Arc Reconstruction of Digital Contours with Chosen Hausdorff Error

  • Bertrand Kerautret
  • Jacques-Olivier Lachaud
  • Thanh Phuong Nguyen
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6607)

Abstract

We address the problem of constructing an approximate continuous representation of a digital contour with guarantees on the Hausdorff error between the digital shape and its reconstruction. Instead of polygonalizing the contour, we propose to reconstruct the shape with circular arcs. To do so, we exploit the recent curvature estimators. From their curvature field, we introduce a new simple and efficient algorithm to approximate a digital shape with as few arcs as possible at a given scale, specified by a maximal admissible Hausdorff distance. We show the potential of our reconstruction method with numerous experiments and we also compare our results with some recent promising approaches. Last, all these algorithms are available online for comparisons on arbitrary shapes.

Keywords

Straight Segment Merging Process Contour Point Curvature Estimator Geometric Primitive 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Bretin, E., Lachaud, J.O., Oudet, E.: Regularization of discrete contour by willmore energy (2010) (submitted)Google Scholar
  2. 2.
    Chen, J.-M., Ventura, J.A., Wu, C.: Segmentation of planar curves into circular and line segments. Image Vision and Computing 14, 71–83 (1996)CrossRefGoogle Scholar
  3. 3.
    Debled-Rennesson, I., Feschet, F., Rouyer-Degli, J.: Optimal blurred segments decomposition of noisy shapes in linear time. Computers & Graphics 30(1) (2006)Google Scholar
  4. 4.
    Bodansky, E., Gribov, A.: Approximation of a polyline with a sequence of geometric primitives. In: Campilho, A., Kamel, M.S. (eds.) ICIAR 2006. LNCS, vol. 4142, pp. 468–478. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  5. 5.
    Esbelin, H.-A., Malgouyres, R.: Convergence of binomial-based derivative estimation for C 2 noisy discretized curves. In: Brlek, S., Reutenauer, C., Provençal, X. (eds.) DGCI 2009. LNCS, vol. 5810, pp. 57–66. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  6. 6.
    Feschet, F.: Multiscale analysis from 1d parametric geometric decomposition of shapes. In: IEEE (ed.) Int. Conf. on Pattern Recognition, pp. 2102–2105 (2010)Google Scholar
  7. 7.
    Horng, J.H.: An adaptive smoothing approach for fitting digital planar curves with line segments and circular arcs. Pat. Rec. Letters 24(1-3), 565–577 (2003)CrossRefGoogle Scholar
  8. 8.
    Horng, J.H., Li, J.T.: A dynamic programming approach for fitting digital planar curves with line segments and circular arcs. Pat. Rec. Letters 22(2), 183–197 (2001)CrossRefMATHGoogle Scholar
  9. 9.
    Kerautret, B., Lachaud, J.O.: Curvature estimation along noisy digital contours by approximate global optimization. Pattern Recognition 42(10), 2265–2278 (2009)CrossRefMATHGoogle Scholar
  10. 10.
    Kerautret, B., Lachaud, J.O.: Multi-scale analysis of discrete contours for unsupervised noise detection. In: Wiederhold, P., Barneva, R.P. (eds.) IWCIA 2009. LNCS, vol. 5852, pp. 187–200. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  11. 11.
    Kerautret, B., Lachaud, J.O., Naegel, B.: Curvature based corner detector for discrete, noisy and multi-scale contours. IJSM 14(2), 127–145 (2008)MathSciNetMATHGoogle Scholar
  12. 12.
    Kerautret, B., Lachaud, J.O., Nguyen, T.P.: Curvature based contour representation demo (2010), http://kerrecherche.iutsd.uhp-nancy.fr/CBContours
  13. 13.
    Liu, H., Latecki, L.J., Liu, W.: A unified curvature definition for regular, polygonal, and digital planar curves. Int. J. Comput. Vision 80(1), 104–124 (2008)CrossRefGoogle Scholar
  14. 14.
    Malgouyres, R., Brunet, F., Fourey, S.: Binomial convolutions and derivatives estimation from noisy discretizations. In: Coeurjolly, D., Sivignon, I., Tougne, L., Dupont, F. (eds.) DGCI 2008. LNCS, vol. 4992, pp. 370–379. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  15. 15.
    Nguyen, T.P.: Etude des courbes discrètes: applications en analyse d’images. Ph.D. thesis, Nancy University - LORIA (2010) (in french)Google Scholar
  16. 16.
    Rosin, P.L., West, G.A.W.: Segmentation of edges into lines and arcs. Image Vision Comput. 7(2), 109–114 (1989)CrossRefGoogle Scholar
  17. 17.
    Salmon, J.P., Debled-Rennesson, I., Wendling, L.: A new method to detect arcs and segments from curvature profiles. In: ICPR, pp. 387–390. IEEE, Los Alamitos (2006)Google Scholar
  18. 18.
    Tortorella, F., Patraccone, R., Molinara, M.: A dynamic programming approach for segmenting digital planar curves into line segments and circular arcs. In: ICPR (2008)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Bertrand Kerautret
    • 1
    • 2
  • Jacques-Olivier Lachaud
    • 2
  • Thanh Phuong Nguyen
    • 1
  1. 1.LORIA (UMR CNRS 7503)Nancy UniversityFrance
  2. 2.LAMA (UMR CNRS 5127)University of SavoieFrance

Personalised recommendations