Abstract

We study two variants of infinite games with imperfect information. In the first variant, in each round player-1 may decide to hide his move from player-2. This captures situations where the input signal is subject to fluctuations (noises), and every error in the input signal can be detected by the controller. In the second variant, all of player-1 moves are visible to player-2; however, after the game ends, player-1 may change some of his moves. This captures situations where the input signal is subject to fluctuations; however, the controller cannot detect errors in the input signal.

We consider several cases, according to the amount of errors allowed in the input signal: a fixed number of errors, finitely many errors and the case where the rate of errors is bounded by a threshold. For each of these cases we consider games with regular and mean-payoff winning conditions. We investigate the decidability of these games.

There is a natural reduction for some of these games to (perfect information) multidimensional mean-payoff games recently considered in [7]. However, the decidability of the winner of multidimensional mean-payoff games was stated as an open question. We prove its decidability and provide tight complexity bounds.

References

  1. 1.
    Alur, R., Degorre, A., Maler, O., Weiss, G.: On omega-languages defined by mean-payoff conditions. In: de Alfaro, L. (ed.) FOSSACS 2009. LNCS, vol. 5504, pp. 333–347. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  2. 2.
    Bjorklund, H., Sandberg, S., Vorobyov, S.: Memoryless determinacy of parity and mean payoff games: a simple proof. Theoretical Computer Science 310, 365–378 (2004)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Brázdil, T., Jancar, P., Kucera, A.: Reachability games on extended vector addition systems with states. In: Abramsky, S., Gavoille, C., Kirchner, C., Meyer auf der Heide, F., Spirakis, P.G. (eds.) ICALP 2010. LNCS, vol. 6199, pp. 478–489. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  4. 4.
    Büchi, J.R., Landweber, L.H.: Solving sequential conditions by finite-state strategies. Transactions of the AMS 138, 295–311 (1969)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Chatterjee, K., Henzinger, T.A., Jurdzinski, M.: Mean payoff parity games. In: Proc. of LICS, pp. 178–187. IEEE Computer Society, Los Alamitos (2005)Google Scholar
  6. 6.
    Chatterjee, K., Doyen, L.: Energy Parity Games. In: Abramsky, S., Gavoille, C., Kirchner, C., Meyer auf der Heide, F., Spirakis, P.G. (eds.) ICALP 2010. LNCS, vol. 6199, pp. 599–610. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  7. 7.
    Chatterjee, K., Doyen, L., Henzinger, T.A., Raskin, J.F.: Generalized mean payoff and Energy Games. To appear in Proc. of FSTTCS (2010)Google Scholar
  8. 8.
    Chatterjee, K., Doyen, L., Edelsbrunner, H., Henzinger, T.A., Rannou, P.: Mean-Payoff Automaton Expressions. In: Gastin, P., Laroussinie, F. (eds.) CONCUR 2010. LNCS, vol. 6269, pp. 269–283. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  9. 9.
    Chatterjee, K., Doyen, L., Henzinger, T.A., Raskin, J.-F.: Algorithms for omega-regular games with imperfect information,. In: Ésik, Z. (ed.) CSL 2006. LNCS, vol. 4207, pp. 287–302. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  10. 10.
    Degorre, A., Doyen, L., Gentilini, R., Raskin, J.-F., Torunczyk, S.: Energy and Mean-Payoff Games with Imperfect Information. In: Dawar, A., Veith, H. (eds.) CSL 2010. LNCS, vol. 6247, pp. 260–274. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  11. 11.
    Ehrenfeucht, A., Mycielski, J.: International journal of game theory. Positional Strategies for Mean-Payoff Games 8, 109–113 (1979)Google Scholar
  12. 12.
    Grädel, E., Thomas, W., Wilke, T.: Automata, Logics, and Infinite Games. LNCS, vol. 2500. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  13. 13.
    Holtmann, M., Kaiser, L., Thomas, W.: Degrees of Lookahead in Regular Infinite Games. In: Ong, L. (ed.) FOSSACS 2010. LNCS, vol. 6014, pp. 252–266. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  14. 14.
    Kosaraju, S.R., Sullivan, G.F.: Detecting cycles in dynamic graphs in polynomial time. In: Proceedings of the Twentieth Annual ACM Symposium on Theory of Computing, pp. 398–406 (1988)Google Scholar
  15. 15.
    Reif, J.H.: The complexity of two-player games of incomplete information. Journal of Computer and System Sciences 29(2), 274–301 (1984)MathSciNetCrossRefGoogle Scholar
  16. 16.
    Thomas, W.: Automata on infinite objects. In: Handbook of Theoretical Computer Science, vol. B, pp. 133–191. Elsevier Science Pub., Amsterdam (1990)Google Scholar
  17. 17.
    Zwick, U., Paterson, M.: The Complexity of Mean Payoff Games on Graphs. Theoretical Computer Science 158, 343–359 (1996)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Yaron Velner
    • 1
  • Alexander Rabinovich
    • 1
  1. 1.The Blavatnik School of Computer ScienceTel Aviv UniversityIsrael

Personalised recommendations