Chemical Sensors and Measurement

  • Ping Wang
  • Qingjun Liu
Part of the Advanced Topics in Science and Technology in China book series (ATSTC)


Chemical sensors have been widely used in the biomedical field. With the rapid development of microelectronics and microprocessing technology, chemical sensors have grown to be more and more miniaturized and integrated. Combined with new information processing technology, intelligent chemical sensor arrays such as e-Nose and e-Tongue have been developed. Meanwhile, microfluidic chips enable continuous monitoring of chemical substances in living organisms.


Sensor Network Sensor Node Wireless Sensor Network Chemical Sensor Sensor Array 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Akyildiz I.F., Su W., Sankarasubramaniam Y. & Cayirci E., 2002. Wireless sensor networks: a survey. Computer Networks. 38, 393–422.CrossRefGoogle Scholar
  2. Barcelo D., 2006. Comprehensive Analytical Chemistry. Elsevier. 49, 87–100.Google Scholar
  3. Barker S.L.R., Ross D., Tarlov M.J., Gaitan M. & Locascio L.E., 2000. Control of flow direction in microfluidic devices with polyelectrolyte multilayers. Analytical Chemistry. 72, 5925–5929.CrossRefGoogle Scholar
  4. Bergveld P., 2003. Thirty years of ISFETOLOGY-What happened in the past 30 years and what may happen in the next 30 years? Sensors and Actuators B-Chemical. 88, 1–20.CrossRefGoogle Scholar
  5. Chen Y. & Ge W., 2007. Principle and Application of Modern Sensors. Science Press. 239–250.Google Scholar
  6. Chong C. & Kumar S.P., 2003. Sensor networks: evolution, opportunities, and challenges. Proceedings of the IEEE. 91, 1247–1256.CrossRefGoogle Scholar
  7. Dhanabalan A., Dabke R.B., Kumar N.P., Talwar S.S., Major S., Lal R. & Contractor A.Q., 1997. A study of Langmuir and Langmuir-Blodgett films of polyaniline. Langmuir. 13, 4395–4400.CrossRefGoogle Scholar
  8. Duffy D.C., McDonald J.C., Schueller O.J.A. & Whitesides G.M., 1998. Rapid prototyping of microfluidic systems in poly (dimethylsiloxane). Analytical Chemistry. 70, 4974–4984.CrossRefGoogle Scholar
  9. Dzyadevych S.V., Soldatikin A.P., El’skaya A.V., Martelet C. & Renault N.J., 2006. Enzyme biosensors based on ion-selective field-effect transistors. Analytica Chimica Acta. 568, 248–258.CrossRefGoogle Scholar
  10. Eddington A.S., 1928. Nature of the Physical World. Cambridge/London/New York: Cambridge University Press.CrossRefGoogle Scholar
  11. Feeney R., Herdan J., Nolan M.A., Tan S.H., Tarasov V.V. & Kounaves S.P., 1998. Analytical characterization of microlithographically fabricated iridium-based ultramicroelectrode arrays. Electroanalysis. 10, 89–93.CrossRefGoogle Scholar
  12. Fu C., 2009. A room temperature surface acoustic wave hydrogen sensor with Pt coated ZnO nanorods. Nanotechnology. 20, 55–60.Google Scholar
  13. Gravesen P., Branebjerg J. & Jensen O.S., 1993. Microfluidics-a review. Journal of the Micromechanics and Microengineering. 3, 168–182.CrossRefGoogle Scholar
  14. Gründler P., 2007. Chemical Sensors. Springer, Germany.Google Scholar
  15. Ho C.M. & Tai Y.C., 1998. Micro-electro-mechanical-systems (MEMS) and fluid flows. Annual Review of Fluid Mechanics. 30, 579–612.CrossRefGoogle Scholar
  16. Ismail A.B., Sugihara H., Yoshinobu T. & Iwasaki H., 2001. A novel low-noise measurement principle for LAPS and its application to faster measurement of pH. Sensors and Actuators B-Chemical. 74,112–116.CrossRefGoogle Scholar
  17. Kaneyasu K., Otsuka K., Setoguchi Y., Sonoda S., Nakahara T., Aso I. & Nakagaichi N., 2000. A carbon dioxide gas sensor based on solid electrolyte for air quality control. Sensors and Actuators B-Chemical. 66, 56–58.CrossRefGoogle Scholar
  18. Koley G., Liu J., Nomani M.W., Yim M., Wen X. & Hsia T.Y., 2009. Miniaturized implantable pressure and oxygen sensors based on polydimethylsiloxane thin films. Materials Science and Engineering C-Biomimetic and Supramolecular Systems. 29, 685–690.CrossRefGoogle Scholar
  19. Koryta J., 1986. Ion-selective electrodes. Annual Review of Materials Science. 16, 13–27.CrossRefGoogle Scholar
  20. Lehmann, M., Baumann W., Brischwein M., Ehret R., Kraus M., Schwinde A., Bitzenhofer M., Freund I. & Wolf B., 2000. Non-invasive measurement of cell membrane associated proton gradients by ion-sensitive field effect transistor arrays for microphysiological and bioelectronical applications. Biosensors and Bioelectronics. 15, 117–124.CrossRefGoogle Scholar
  21. Lin B.C. & Qin J.H., 2006. Microfluidic Chip Laboratory. Science Press, China.Google Scholar
  22. Meguerdichian, S., Koushanfar F., Potkonjak M. & Srivastava M., 2001. Coverage problems in wireless ad-hoc sensor networks. IEEE Conference on Computer Communications. 3, 1380–1387.Google Scholar
  23. Mourzina Y.G., Ermolenko Y.E., Yoshinobu T., Vlasov Y., Iwasaki H. & Schöning M.J., 2003. Anion-selective light-addressable potentiometric sensors (LAPS) for the determination of nitrate and sulphate ions. Sensors and Actuators B-Chemical. 91, 32–38.CrossRefGoogle Scholar
  24. Mourzina Y.G., Yoshinobu T., Schubert J., Lüth H., Iwasaki H. & Schöning M.J., 2001. Ion-selective light addressable potentiometric sensor (LAPS) with chalcogenide thin film prepared by pulsed laser deposition. Sensors and Actuators B-Chemical. 80, 136–140.CrossRefGoogle Scholar
  25. Perrig A., Stankovik J. & Wagner D., 2004. Security in wireless sensor networks. Communications of the ACM. 6, 47–58.Google Scholar
  26. Rolf D., 2002. Electronic noses. Eurocosmetics. 10, 20–29.Google Scholar
  27. Roveti D.K., 2001. Choosing a humidity sensor: a review of three technologies. Sensors. 18, 54–58.Google Scholar
  28. Sichitiu M.L., 2004. Cross-layer scheduling for power efficiency in wireless sensor networks. IEEE Conference on Computer Communications.Google Scholar
  29. Stetter J.R. & Penrose W.R., 2001. Electrochemical nose. Electrochemistry Encyclopedia.Google Scholar
  30. Toko K., 1998. Electronic tongue. Biosensors and Bioelectronics. 13,701–709.CrossRefGoogle Scholar
  31. Unger M.A., Chou H.P., Thorsen T., Scherer A. & Quake S.R., 2000. Monolithic microfabricated valves and pumps by multilayer soft lithography. Science. 288, 113–116.CrossRefGoogle Scholar
  32. Wang P. & Ye X., 2005. Modern Biomedical Sensors, 2nd. Zhejiang University Press, China.Google Scholar
  33. Wang X. & Akilydiz I.F., 2002. A survey on sensor networks. IEEE Communication Magazine.Google Scholar
  34. Whitesides G.M., 2006. The origins and the future of microfluidics. Nature. 442, 368–373.CrossRefGoogle Scholar
  35. Xie X., Stueben D. & Berner Z., 2005. The application of microelectrodes for the measurements of trace metals in water. Analytical Letters. 38, 2281–2300.CrossRefGoogle Scholar
  36. Zhang F., Niu W. & Sun Z., 1999. The research on the response mechanism of pH-LAPS. Acta Scientiarum Naturalium University Nankaiensis. 32, 13–16.Google Scholar
  37. Zhou J. & Mason A., 2002. Communication buses and protocols for sensor networks. Sensors. 2, 244–257.CrossRefGoogle Scholar
  38. Zuo B. & Liu G., 2007. Principles and Applications of Chemical Sensors. Tsinghua University Press, China.Google Scholar

Copyright information

© Zhejiang University Press, Hangzhou and Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Ping Wang
    • 1
  • Qingjun Liu
    • 1
  1. 1.Dept. of Biomedical EngineeringZhejiang UniversityHangzhouChina

Personalised recommendations