Advertisement

MRF Labeling for Multi-view Range Image Integration

  • Ran Song
  • Yonghuai Liu
  • Ralph R. Martin
  • Paul L. Rosin
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6493)

Abstract

Multi-view range image integration focuses on producing a single reasonable 3D point cloud from multiple 2.5D range images for the reconstruction of a watertight manifold surface. However, registration errors and scanning noise usually lead to a poor integration and, as a result, the reconstructed surface cannot have topology and geometry consistent with the data source. This paper proposes a novel method cast in the framework of Markov random fields (MRF) to address the problem. We define a probabilistic description of a MRF labeling based on all input range images and then employ loopy belief propagation to solve this MRF, leading to a globally optimised integration with accurate local details. Experiments show the advantages and superiority of our MRF-based approach over existing methods.

Keywords

Point Cloud Markov Random Field Range Image Registration Error Markov Random Field Model 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bernardini, F., Mittleman, J., Rushmeier, H., Silva, C., Taubin, G.: The ball-pivoting algorithm for surface reconstruction. IEEE Trans. Visual. Comput. Graph. 5, 349–359 (1999)CrossRefGoogle Scholar
  2. 2.
    Katulakos, K., Seitz, S.: A theory of shape by space carving. Int. J. Comput. Vision 38, 199–218 (2000)CrossRefzbMATHGoogle Scholar
  3. 3.
    Dey, T., Goswami, S.: Tight cocone: a watertight surface reconstructor. J. Comput. Inf. Sci. Eng. 13, 302–307 (2003)CrossRefGoogle Scholar
  4. 4.
    Mederos, B., Velho, L., de Figueiredo, L.: Smooth surface reconstruction from noisy clouds. J. Braz. Comput. Soc. 9, 52–66 (2004)CrossRefGoogle Scholar
  5. 5.
    Curless, B., Levoy, M.: A volumetric method for building complex models from range images. In: Proc. SIGGRAPH, pp. 303–312 (1996)Google Scholar
  6. 6.
    Dorai, C., Wang, G.: Registration and integration of multiple object views for 3d model construction. IEEE Trans. Pattern Anal. Mach. Intell. 20, 83–89 (1998)CrossRefGoogle Scholar
  7. 7.
    Rusinkiewicz, S., Hall-Holt, O., Levoy, M.: Real-time 3d model acquisition. In: Proc. SIGGRAPH, pp. 438–446 (2002)Google Scholar
  8. 8.
    Sagawa, R., Nishino, K., Ikeuchi, K.: Adaptively merging large-scale range data with reflectance properties. IEEE Trans. Pattern Anal. Mach. Intell. 27, 392–405 (2005)CrossRefGoogle Scholar
  9. 9.
    Zhou, H., Liu, Y.: Accurate integration of multi-view range images using k-means clustering. Pattern Recognition 41, 152–175 (2008)CrossRefzbMATHGoogle Scholar
  10. 10.
    Zhou, H., Liu, Y., Li, L., Wei, B.: A clustering approach to free form surface reconstruction from multi-view range images. Image and Vision Computing 27, 725–747 (2009)CrossRefGoogle Scholar
  11. 11.
    Hilton, A.: On reliable surface reconstruction from multiple range images. Technical report (1995)Google Scholar
  12. 12.
    Turk, G., Levoy, M.: Zippered polygon meshes from range images. In: Proc. SIGGRAPH, pp. 311–318 (1994)Google Scholar
  13. 13.
    Rutishauser, M., Stricker, M., Trobina, M.: Merging range images of arbitrarily shaped objects. In: Proc. CVPR, pp. 573–580 (1994)Google Scholar
  14. 14.
    Sun, Y., Paik, J., Koschan, A., Abidi, M.: Surface modeling using multi-view range and color images. Int. J. Comput. Aided Eng. 10, 137–150 (2003)Google Scholar
  15. 15.
    Li, X., Wee, W.: Range image fusion for object reconstruction and modelling. In: Proc. First Canadian Conference on Computer and Robot Vision, pp. 306–314 (2004)Google Scholar
  16. 16.
    Zhou, H., Liu, Y.: Incremental point-based integration of registered multiple range images. In: Proc. IECON, pp. 468–473 (2005)Google Scholar
  17. 17.
    Wang, X., Wang, H.: Markov random field modelled range image segmentation. Pattern Recognition Letters 25, 367–375 (2004)CrossRefGoogle Scholar
  18. 18.
    Suliga, M., Deklerck, R., Nyssen, E.: Markov random field-based clustering applied to the segmentation of masses in digital mammograms. Computerized Medical Imaging and Graphics 32, 502–512 (2008)CrossRefGoogle Scholar
  19. 19.
    Felzenszwalb, P., Huttenlocher, D.: Efficient belief propagation for early vision. International Journal of Computer Vision 70, 41–54 (2006)CrossRefGoogle Scholar
  20. 20.
    Diebel, J., Thrun, S.: An application of markov random fields to range sensing. In: Proc. NIPS (2005)Google Scholar
  21. 21.
    Liu, Y.: Automatic 3d free form shape matching using the graduated assignment algorithm. Pattern Recognition 38, 1615–1631 (2005)CrossRefGoogle Scholar
  22. 22.
    Li, S.: Markov random field modelling in computer vision, 2nd edn. Springer, Heidelberg (1995)CrossRefGoogle Scholar
  23. 23.
    Boykov, Y., Veksler, O., Zabih, R.: Fast approximate energy minimization via graph cuts. IEEE Trans. Pattern Anal. Mach. Intell. 23, 1222–1239 (2001)CrossRefGoogle Scholar
  24. 24.
    Szeliski, R., Zabih, R., Scharstein, D., Veksler, O., Kolmogorov, V., Agarwala, A., Tappen, M., Rother, C.: A comparative study of energy minimization methods for markov random fields with smoothness-based priors. Pattern Analysis and Machine Intelligence. IEEE Trans. Pattern Anal. Mach. Intell. 30, 1068–1080 (2008)CrossRefGoogle Scholar
  25. 25.
    Kolmogorov, V., Zabih, R.: What energy functions can be minimized via graph cuts? IEEE Trans. Pattern Anal. Mach. Intell. 26, 147–159 (2004)CrossRefzbMATHGoogle Scholar
  26. 26.
    Yedidia, J., Freeman, W., Weiss, Y.: Understanding belief propagation and its generalizations. Techincal Report TR-2001-22, MERL (2002)Google Scholar
  27. 27.
    Lee, C., Lo, S.: A new scheme for the generation of a graded quadrilateral mesh. Computers and Structures 52, 847–857 (1994)CrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Ran Song
    • 1
  • Yonghuai Liu
    • 1
  • Ralph R. Martin
    • 2
  • Paul L. Rosin
    • 2
  1. 1.Department of Computer ScienceAberystwyth UniversityUK
  2. 2.School of Computer Science & InformaticsCardiff UniversityUK

Personalised recommendations