Advertisement

Interoperation, Composition and Simulation of Services at Home

  • Eirini Kaldeli
  • Ehsan Ullah Warriach
  • Jaap Bresser
  • Alexander Lazovik
  • Marco Aiello
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6470)

Abstract

Pervasive computing environments such as our future homes are the prototypical example of a dynamic, complex system where Service-Oriented Computing techniques will play an important role. A home equipped with heterogeneous devices, whose services and location constantly change, needs to behave as a coherent system supporting its inhabitants. In this paper, we present a fully implemented architecture for domotic applications which uses the concept of a service as its fundamental abstraction. The architecture distinguishes between a pervasive layer where devices and their basic internetworking live, and a composition layer where services can be dynamically composed as a reaction to user desires or home events. Next to the architecture, we also illustrate a visualization and simulation environment to test home coordination scenarios. From the technical point of view, the implementation uses UPnP as the basic device connection protocol and techniques from Artificial Intelligence planning for composing services at runtime.

Keywords

Pervasive Services Internet of Things Composition 

References

  1. 1.
    UpnpTM device architecture version 1.1 (2008), http://www.upnp.org
  2. 2.
    OSGi service platform core specification release 4 (2009), http://www.osgi.org
  3. 3.
    Aiello, M.: The Role of Web Services at Home. In: IEEE Web Service-based Systems and Applications, WEBSA (2006)Google Scholar
  4. 4.
    Aiello, M., Dustdar, S.: A domotic infrastructure based on the web service stack. Pervasive and Mobile Computing 4(4), 506–525 (2008)CrossRefGoogle Scholar
  5. 5.
    Baldoni, R., Cerocchi, A., Lodi, G., Montanari, L., Querzoni, L.: Designing highly available repositories for heterogeneous sensor data in open home automation systems. In: Lee, S., Narasimhan, P. (eds.) SEUS 2009. LNCS, vol. 5860, pp. 144–155. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  6. 6.
    Dobrev, P., Famolari, D., Kurzke, C., Miller, B.A.: Device and service discovery in home networks with osgi. Communications Magazine, IEEE 40(8), 86–92 (2002)CrossRefGoogle Scholar
  7. 7.
    Ghallab, M., Nau, D., Traverso, P.: Automated Planning: Theory and Practice. Morgan Kaufmann, Amsterdam (2004)zbMATHGoogle Scholar
  8. 8.
    Guger, C., Daban, S., Sellers, E., Holzner, C., Krausz, G., Carabalona, R., Gramatica, F., Edlinger, G.: How many people are able to control a P300-based brain-computer interface (BCI)? Neuroscience Letters 462, 94–98 (2009)CrossRefGoogle Scholar
  9. 9.
    Kaldeli, E., Lazovik, A., Aiello, M.: Extended goals for composing services. In: Proceedings of the 19th International Conference on Automated Planning and Scheduling, ICAPS 2009, Thessaloniki, Greece, September 19-23, AAAI, Menlo Park (2009)Google Scholar
  10. 10.
    Kim, D.S., Lee, J.M., Kwon, W.H., Yuh, I.K.: Design and implementation of home network systems using upnp middleware for networked appliances. IEEE Transactions on Consumer Electronics, 963–972 (2002)Google Scholar
  11. 11.
    Kuter, U., Sirin, E., Nau, D., Parsia, B., Hendler, J.: Information Gathering During Planning for Web Service Composition. Journal of Web Semantics (2004)Google Scholar
  12. 12.
    Lazovik, A., Aiello, M., Papazoglou, M.: Planning and monitoring the execution of web service requests. In: Orlowska, M.E., Weerawarana, S., Papazoglou, M.P., Yang, J. (eds.) ICSOC 2003. LNCS, vol. 2910, pp. 335–350. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  13. 13.
    Lazovik, E., den Dulk, P., de Groote, M., Lazovik, A., Aiello, M.: Services inside the smart home: A simulation and visualization tool. In: Baresi, L., Chi, C.-H., Suzuki, J. (eds.) ICSOC-ServiceWave 2009. LNCS, vol. 5900, pp. 651–652. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  14. 14.
    Martínez, E., Lespérance, Y.: Web Service Composition as a Planning Task: Experiments using Knowledge-Based Planning. In: Proc. of the Workshop on Planning and Scheduling for Web and Grid Services, ICAPS 2004 (2004)Google Scholar
  15. 15.
    Ngo, L.: Service-oriented architecture for home networks. In: Seminar on Internetworking, pp. 1–6 (2007)Google Scholar
  16. 16.
    Panagiotis Gouvas, T.B., Mentzas, G.: An OSGi-Based Semantic Service-Oriented Device Architecture. In: OTM 2007, pp. 773–782 (2007)Google Scholar
  17. 17.
    Pecora, F., Cesta, A.: DCOP for Smart Homes: a Case Study. Computational Intelligence 23(4), 395–419 (2007)MathSciNetCrossRefGoogle Scholar
  18. 18.
    Redondo, R.P.D., Vilas, A.F., Cabrer, M.R., Arias, J.J.P., Duque, J.G., Solla, A.G.: Enhancing residential gateways: A semantic OSGi platform. IEEE Intelligent Systems 23(1), 32–40 (2008)CrossRefGoogle Scholar
  19. 19.
    SM4All: Smart hoMes for All (2008-2011), http://www.sm4art-project.eu

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Eirini Kaldeli
    • 1
  • Ehsan Ullah Warriach
    • 1
  • Jaap Bresser
    • 1
  • Alexander Lazovik
    • 1
  • Marco Aiello
    • 1
  1. 1.Distributed Systems Group, Johann Bernoulli InstituteUniversity of GroningenThe Netherlands

Personalised recommendations