Advertisement

Repair vs. Recomposition for Broken Service Compositions

  • Yuhong Yan
  • Pascal Poizat
  • Ludeng Zhao
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6470)

Abstract

Service composition supports the automatic construction of value-added distributed applications. However, this is nowadays mainly a static affair, with compositions being built once and for all. Moving from a static to a dynamic world, where both available services and needs may change, requires automated techniques to correct broken compositions. Recomposition is a working solution but it requires to rebuild composition models from scratch. With graph planning as the service composition framework, we propose repair as an alternative to recomposition. Rather than discarding broken compositions, repair reuses and corrects them for fast generating new service compositions. Our approach is completely tool-supported. This enables us to compare repair and recomposition using both a case study and a data set from a service composition benchmark framework.

Keywords

Planning Graph Service Composition Plan Repair Repair Algorithm Proposition Level 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    van der Aalst, W.M.P., Mooij, A.J., Stahl, C., Wolf, K.: Service Interaction: Patterns, Formalization, and Analysis. In: Bernardo, M., Padovani, L., Zavattaro, G. (eds.) SFM 2009. LNCS, vol. 5569, pp. 42–88. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  2. 2.
    Baresi, L., Guinea, S., Pasquale, L.: Self-healing bpel processes with dynamo and the jboss rule engine. In: Proc. of ESSPE, pp. 11–20 (2007)Google Scholar
  3. 3.
    Beauche, S., Poizat, P.: Automated Service Composition with Adaptive Planning. In: Bouguettaya, A., Krueger, I., Margaria, T. (eds.) ICSOC 2008. LNCS, vol. 5364, pp. 530–537. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  4. 4.
    Blum, A.L., Furst, M.L.: Fast Planning through Planning Graph Analysis. Artificial Intelligence Journal 90(1–2), 281–300 (1997)CrossRefzbMATHGoogle Scholar
  5. 5.
    Brogi, A., Popescu, R.: Automated generation of bpel adapters. In: Dan, A., Lamersdorf, W. (eds.) ICSOC 2006. LNCS, vol. 4294, pp. 27–39. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  6. 6.
    Cavallaro, L., Nitto, E.D., Pradella, M.: An automatic approach to enable replacement of conversational services. In: Baresi, L., Chi, C.-H., Suzuki, J. (eds.) ICSOC-ServiceWave 2009. LNCS, vol. 5900, pp. 159–174. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  7. 7.
    Chan, K.S.M., Bishop, J., Baresi, L.: Survey and comparison of planning techniques for web service composition. Tech. rep, Dept Computer Science, University of Pretoria (2007)Google Scholar
  8. 8.
    Dustdar, S., Schreiner, W.: A survey on web services composition. Int. J. Web and Grid Services 1(1), 1–30 (2005)CrossRefGoogle Scholar
  9. 9.
    Fox, M., Gerevini, A., Long, D., Serina, I.: Plan Stability: Replanning versus Plan Repair. In: Proc. of ICAPS, pp. 212–221 (2006)Google Scholar
  10. 10.
    Friedrich, G., Ivanchenko, V.: Model-based repair of web service processes. Tech. Rep. 2008/001, ISBI research group, Alpen-Adria-Universität Klagenfurt (2008)Google Scholar
  11. 11.
    Gajewski, M., Momotko, M., Meyer, H., Schuschel, H., Weske, M.: Dynamic failure recovery of generated workflows. In: Proc. of DEXA Workshops, pp. 982–986 (2005)Google Scholar
  12. 12.
    Ghallab, M., Nau, D., Traverso, P.: Automated Planning: Theory and Practice. Morgan Kaufmann Publishers, San Francisco (2004)zbMATHGoogle Scholar
  13. 13.
    Grigori, D., Corrales, J.C., Bouzeghoub, M.: Behavioral matchmaking for service retrieval: Application to conversation protocols. Inf. Syst. 33(7-8), 681–698 (2008)CrossRefGoogle Scholar
  14. 14.
    Hashemian, S.V., Mavaddat, F.: A logical reasoning approach to automatic composition of stateless components. Fundam. Inform. 89(4), 539–577 (2008)MathSciNetzbMATHGoogle Scholar
  15. 15.
    Lazovik, A., Aiello, M., Papazoglou, M.P.: Planning and monitoring the execution of web service requests. Int. J. on Digital Libraries 6(3), 235–246 (2006)CrossRefGoogle Scholar
  16. 16.
    Marconi, A., Pistore, M.: Synthesis and Composition of Web Services. In: Bernardo, M., Padovani, L., Zavattaro, G. (eds.) SFM 2009. LNCS, vol. 5569, pp. 89–157. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  17. 17.
    Mateescu, R., Poizat, P., Salaün, G.: Adaptation of service protocols using process algebra and on-the-fly reduction techniques. In: Bouguettaya, A., Krueger, I., Margaria, T. (eds.) ICSOC 2008. LNCS, vol. 5364, pp. 84–99. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  18. 18.
    Meyer, H., Kuropka, D., Tröger, P.: Asg - techniques of adaptivity. In: Proc. of AAWS (2007)Google Scholar
  19. 19.
    Meyer, H., Weske, M.: Automated service composition using heuristic search. In: Dustdar, S., Fiadeiro, J.L., Sheth, A.P. (eds.) BPM 2006. LNCS, vol. 4102, pp. 81–96. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  20. 20.
    Moser, O., Rosenberg, F., Dustdar, S.: Non-intrusive monitoring and service adaptation for ws-bpel. In: Proc. of WWW, pp. 815–824 (2008)Google Scholar
  21. 21.
    Motahari Nezhad, H.R., Xu, G.Y., Benatallah, B.: Protocol-aware matching of web service interfaces for adapter development. In: Proc. of WWW, pp. 731–740 (2010)Google Scholar
  22. 22.
    Nebal, B., Koehler, J.: Plan Reuse versus Plan Generation: A Theoretical and Empirical Analysis. Artificial Intelligence Journal 76(1-2), 427–454 (1995)CrossRefGoogle Scholar
  23. 23.
    Oh, S.C., Lee, D., Kumara, S.: Web Service Planner (WSPR): An Effective and Scalable Web Service Composition Algorithm. International Journal of Web Service Research 4(1), 1–22 (2007)CrossRefGoogle Scholar
  24. 24.
    Papazoglou, M., Traverso, P., Dustdar, S., Leymann, F.: Service-oriented computing research roadmap (2006), technical report, http://infolab.uvt.nl/staff/mikep/publications/
  25. 25.
    Peer, J.: Web Service Composition as AI Planning – a Survey. Tech. rep., University of St.Gallen (2005)Google Scholar
  26. 26.
    Poizat, P., Yan, Y.: Adaptive Composition of Conversational Services through Graph Planning Encoding. In: Proc. of ISoLA (to appear 2010) Google Scholar
  27. 27.
    Rao, J., Su, X.: A survey of automated web service composition methods. In: Cardoso, J., Sheth, A.P. (eds.) SWSWPC 2004. LNCS, vol. 3387, pp. 43–54. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  28. 28.
    Seguel, R., Eshuis, R., Grefen, P.: An overview on protocol adaptors for service component integration (2008), working Paper from, http://is.tm.tue.nl/staff/heshuis/publications.html
  29. 29.
    Sohrabi, S., Prokoshyna, N., McIlraith, S.A.: Web service composition via the customization of golog programs with user preferences. In: Borgida, A.T., Chaudhri, V.K., Giorgini, P., Yu, E.S. (eds.) Conceptual Modeling: Foundations and Applications. LNCS, vol. 5600, pp. 319–334. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  30. 30.
    Yan, Y., Poizat, P., Zhao, L.: Repairing service compositions in a changing world. In: Proc. of SERA (2010)Google Scholar
  31. 31.
    Yoo, J.W., Kumara, S., Lee, D., Oh, S.C.: A Web Service Composition Framework Using Integer Programming with Non-functional Objectives and Constraints. In: Proc. of CEC/EEE. pp. 347–350 (2008)Google Scholar
  32. 32.
    Zheng, X., Yan, Y.: An Efficient Web Service Composition Algorithm Based on Planning Graph. In: Proc. of ICW 2008, pp. 691–699 (2008)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Yuhong Yan
    • 1
  • Pascal Poizat
    • 2
    • 3
  • Ludeng Zhao
    • 1
  1. 1.Concordia UniversityMontrealCanada
  2. 2.University of Evry Val d’EssonneEvryFrance
  3. 3.LRI UMR 8623 CNRSOrsayFrance

Personalised recommendations