Advertisement

Mikrobiologische Labordiagnostik – Verlässlichkeit und Grenzen

  • Paul Schnitzler
Chapter
  • 6.2k Downloads

Zusammenfassung

Fieber ist ein wichtiges Leitsymptom für viele Infektionskrankheiten, das einen ersten Hinweis auf eine bestehende Infektion geben kann. Hierbei spielen sowohl die Höhe der Temperatur als auch der Verlauf der Fieberkurve eine Rolle, wie z. B. bei der Malaria mit zyklisch auftretenden Fieberanfällen. Bei Infektionen mit Exanthem, wie z. B. Varizellen, ist das klinische Bild des Sternenhimmelphänomens mit Erythem, Papeln und Pusteln richtungweisend und bedarf nur in Ausnahmefällen einer weiteren labordiagnostischen Abklärung. Eine Schwellung der peripheren Lymphknoten und der Milz kann jedoch bei vielen Infektionskrankheiten auftreten und sollte labordiagnostisch näher untersucht werden.

Literatur

  1. 1.
    Deutsches Institut für Normung (DIN) (2000) Medizinische Mikrobiologie und Immunologie: Diagnostische Verfahren. Berlin, Beuth VerlagGoogle Scholar
  2. 2.
    Doerr HW (1996) Prinzipien der virologischen Laboratoriumsdiagnostik. In: Porstmann T (Hrsg) Virusdiagnostik. Blackwell Verlag, Berlin, S 1–30Google Scholar
  3. 3.
    Hahn H, Falke D, Kaufmann SHE, Ullmann U (2001) Medizinische Mikrobiologie und Infektiologie. Springer Verlag Berlin, Heidelberg, New YorkGoogle Scholar
  4. 4.
    Haller OA, Mertens T (2005) Diagnostik und Therapie von Viruskrankheiten. Leitlinien der Gesellschaft für Virologie und Deutschen Vereinigung zur Bekämpfung der Viruskrankheiten. München. Urban und Fischer Verlag, JenaGoogle Scholar
  5. 5.
    Hof H, Müller RL, Dörries R (2000) Mikrobiologie. Thieme VerlagGoogle Scholar
  6. 6.
    Hunfeld K-P, Wichelhaus TA, Brade V (2005) Methoden und Prinzipien serologischer und molekularbiologischer Diagnostik bakterieller Infektionen. In: Thomas L. Labor und Diagnose, TH-Books Verlagsgesellschaft, Frankfurt/Main, S 1585–1591Google Scholar
  7. 7.
    Mahon CR, Manuselis (1995) Diagnostic microbiology. Saunders companyGoogle Scholar
  8. 8.
    Reischl U, Wittwer C, Cockerill F (2001) Rapid cycle real time PCR. Methods and Applications, Microbiology and food analysis. Springer Verlag Berlin, Heidelberg, New YorkGoogle Scholar
  9. 9.
    Wildemann B, Oschmann P, Reiber H (2006) Neurologische Labordiagnostik. Thieme VerlagGoogle Scholar

Schlüsselliteratur

  1. 1.
    Canning EU (1998) Microsporidiosis. In: Palmer SR, Lord Soulsby, Simpson DIH (eds) Zoonoses. Oxford University Press, Oxford, pp 609–623Google Scholar
  2. 2.
    Didier ES, Weiss LM (2006) Microsporidiosis: current status. Curr Opin Infect Dis 5:485–492CrossRefGoogle Scholar
  3. 3.
    Petry F (ed) (2000) Cryptosporidiosis and microsporidiosis. Contributions to Microbiology 6. Karger, BaselGoogle Scholar
  4. 4.
    Weber R, Bryan RT, Schwartz DA, Owen RL (1994) Human microsporidial infections. Clin Microb Rev 7:426–461Google Scholar
  5. 5.
    Smith JE (2009) The ecology and evolution of microsporidian parasites. Parasitology 136:1901–1914PubMedCrossRefGoogle Scholar

Schlüsselliteratur

  1. 1.
    Hoyles L, Collins MD, Falsen E, Nikolaitchouk N, McCarney AL (2004) Transfer of members of the genus Falcivibrio to the genus Mobiluncus. System Appl Microbiol 27:72–83CrossRefGoogle Scholar
  2. 2.
    Schwebke JR, Lawing LF (2001) Prevalence of Mobiluncus spp. among women with and without bacterial vaginosis as detected by polymerase chain reaction. Sex Transm Dis 28:195–199PubMedCrossRefGoogle Scholar
  3. 3.
    Spiegel CA (1991) The Genus Mobiluncus. In: Balows A, Trüper HG, Dworkin M, Harder W, Schleifer KH (Hrsg) The Prokaryotes, 2. Aufl. Springer Verlag, New York, Berlin, HeidelbergGoogle Scholar

Schlüsselliteratur

  1. 1.
    Bugert JJ (2007) Genus Molluscipoxvirus. In: Poxviruses’. Schmidt A, Mercer A, Weber O (eds) Birkhäuser Verlag AG, Basel, Boston, Berlin, S 89–112 (im Druck)Google Scholar
  2. 2.
    Fenner F (1996) Pockenviren. In: Fields N et al. (eds) Virology, 3rd edn. Raven Press Ltd New York, vol 2, pp 2673–2702Google Scholar

Schlüsselliteratur

  1. 1.
    De Vries SPW, Bootsma HJ, Hays JP, Hermans PWM (2009) Molecular aspects of Moraxella catarrhalis pathogenesis. Microbiol Mol Biol Rev 73 (3):389–406PubMedCrossRefGoogle Scholar
  2. 2.
    Hays JP (2009) Moraxella catarrhalis: a mini review. J Pediatr Infect Dis 4:211–220Google Scholar
  3. 3.
    Karalus R, Campagnari A (2000) Moraxella catarrhalis: a review of an important human mucosal pathogen. Microbe Infect 2:547–559CrossRefGoogle Scholar
  4. 4.
    Murphy TF, Parameswaran GI (2009) Moraxella catarrhalis, a human respiratory tract pathogen. Clin Infect Dis 49:124–131PubMedCrossRefGoogle Scholar
  5. 5.
    Verduin CM, Hol C, Fleer A, van Dijk H, van Belkum A (2002) Moraxella catarrhalis: from emerging to established pathogen. Clin Microbiol Rev 15 (1):125–144PubMedCrossRefGoogle Scholar

Schlüsselliteratur

  1. 1.
    De Hoog GS, Guarro J, Gene J, Figuera MJ (2000) Atlas of Clinical Fungi, 2nd edn. Centraalbureau voor Schimmelcultures, Utrecht, Zygomycota, pp 58–124Google Scholar
  2. 2.
    Ribes JA, Vanover-Sams CL, Baker DJ (2000) Zygomycetes in human disease. Clin Microbiol Rev 13:236–301PubMedCrossRefGoogle Scholar
  3. 3.
    Richardson MD, Koukila-Kähkölä P (2007) Rhizopus, Rhizomucor, Absidia, and other agents of systemic and subcutaneous zygomycoses. In: Murray PR, Baron EJ, Jorgensen JH, Landry ML, Pfaller MA (eds) Manual of Clinical Microbiology, vol 2, 9th edn. ASM Press, Washington DC, Chapter 122Google Scholar
  4. 4.
    Rüchel R (2009) Zygomyzeten. In: Neumeister B, Geiss HK, Braun RW, Kimmig P (Hrsg) Mikrobiologische Diagnostik, 2. Aufl. Georg Thieme Verlag, Stuttgart, S. 696–704Google Scholar
  5. 5.
    Spellberg B, Edwards Jr. J, Ibrahim A (2005) Novel perspectives on mucormycosis: Pathophysiology, presentation, and management. Clin Microbiol Rev 18:556–569PubMedCrossRefGoogle Scholar

Schlüsselliteratur

  1. 1.
    Carbone KM, Rubin S (2007) Mumps virus. Fields Virology, 5th edn. Lippincott-Raven, New York, pp 1409–1448Google Scholar
  2. 2.
    Tidona CA, Darai G (eds) (2011) The Springer Index of Viruses. Springer Berlin, Heidelberg, New YorkGoogle Scholar

Schlüsselliteratur

  1. 1.
    Britton WJ, Lockwood DN (2004) Leprosy. Lancet 363:1209–1219PubMedCrossRefGoogle Scholar

Schlüsselliteratur

  1. 1.
    Murray PR, Baron EJ, Jorgensen JH, Pfaller UA, Lendry UL (2007) Manuel of clinical microbiology Vol.1, ASM Press Washington DCGoogle Scholar
  2. 2.
    Neumeister B, Geiss HK, Braun RW, Kimmig P (2009) Mikrobiologische Diagnostik. 2. Auflage Georg Thieme Verlag StuttgartGoogle Scholar

Schlüsselliteratur

  1. 1.
    Adam D, Doerr HW, Link H, Lode H (2004) Die Infektiologie. Springer Verlag BerlinCrossRefGoogle Scholar
  2. 2.
    Murray PR, Baron EJ, Jorgensen JH, Pfaller UA, Lendry UL (2007) Manuel of clinical microbiology Vol.1, ASM Press Washington DCGoogle Scholar
  3. 3.
    Neumeister B, Geiss HK, Braun RW, Kimmig P (2009) Mikrobiologische Diagnostik. 2. Auflage Georg Thieme Verlag StuttgartGoogle Scholar

Schlüsselliteratur

  1. 1.
    Adam D, Doerr HW, Link H, Lode H (2004) Die Infektiologie. Springer Verlag BerlinCrossRefGoogle Scholar
  2. 2.
    Dumke R, Jacobs E (2009) Comparison of commercial and in-house Real-Time PCR assays used for detection of Mycoplasma pneumoniae. Journal of Clinical Microbiology 47:441–444PubMedCrossRefGoogle Scholar
  3. 3.
    Murray PR, Baron EJ, Jorgensen JH, Pfaller UA, Lendry UL (2007) Manuel of clinical microbiology Vol.1, ASM Press Washington DCGoogle Scholar
  4. 4.
    Neumeister B, Geiss HK, Braun RW, Kimmig P (2009) Mikrobiologische Diagnostik. 2. Auflage Georg Thieme Verlag StuttgartGoogle Scholar

Schlüsselliteratur

  1. 1.
    Hall MJR, Smith KGV (1993) Diptera causing myiasis in man. In: Lane RP, Crosskey RW (eds) Medical insects and arachnids. Chapman & Hall, London, pp 429–469CrossRefGoogle Scholar
  2. 2.
    Hall M, Wall R (1995) Myiasis of humans and domestic animals. Adv Parasitol 35:257–334PubMedCrossRefGoogle Scholar
  3. 3.
    Zumpt E (1965) Myiasis in man and animals in the Old World. Butterworths, LondonGoogle Scholar

Schlüsselliteratur

  1. 1.
    Falkinham JO.3rd (1996) Epidemiology of infection by nontuberculous mycobacteria. Clin Microbiol Rev 9:177–215PubMedGoogle Scholar
  2. 2.
    Falkinham JO 3rd (2002) Nontuberculous mycobacteria in the environment. Clin Chest Med 23:529–551PubMedCrossRefGoogle Scholar
  3. 3.
    Griffith DE (2007) An official ATS/IDSA statement: diagnosis, treatment, and prevention of nontuberculous mycobacterial diseases. Am J Respir Crit Care Med. 175:367–416PubMedCrossRefGoogle Scholar
  4. 4.
    Heifets L (2004) Mycobacterial infections caused by nontuberculous mycobacteria. Semin Respir Crit Care Med 25:283–295PubMedCrossRefGoogle Scholar
  5. 5.
    Wagner D, Young LS (2004) Nontuberculous mycobacterial infections: a clinical review. Infection 32:257–270PubMedCrossRefGoogle Scholar
  6. 6.
    Wolinsky E (1979) Nontuberculous mycobacteria and associated diseases. Am Rev Respir Dis 119:107–159PubMedGoogle Scholar

Schlüsselliteratur

  1. 1.
    Bratos-Pérez MA, Sánchez PL, García de Cruz S, Villacorta E, Palacios IF, Fernández-Fernández JM, Di Stefano S, Orduña-Domingo A, Carrascal Y, Mota P, Martín-Luengo C, Bermejo J, San Roman JA, Rodríguez-Torres A, Fernández-Avilés F (2008) Grupo AORTICA (Grupo de Estudio de la Estenosis Aórtica). Association between self-replicating calcifying nanoparticles and aortic stenosis: a possible link to valve calcification. Eur Heart J 29:371–376PubMedCrossRefGoogle Scholar
  2. 2.
    Candemir B, Ertas FS, Ozdol C, Ozdemir AO, Hasan T, Akan OA, Sahin M, Tulunay C, Dincer I, Atmaca Y, Erol C (2010) Association between antibodies against calcifying nanoparticles and mitral annular calcification (im Druck)Google Scholar
  3. 3.
    Ewence AE, Bootman M, Roderick HL, Skepper JN, Mc-Carthy G, Epple M, Neumann M, Shanahan CM, Proudfoot D (2008) Calcium phosphate crystals induce cell death in human vascular smooth muscle cells: a potential mechanism in atherosclerotic plaque destabilization. Circ Res 103:e28-e34PubMedCrossRefGoogle Scholar
  4. 4.
    Jelic TM, Chang HH, Roque R, Malas AM, Warren SG, Sommer AP (2007) Nanobacteria-associated calcific aortic valve stenosis. J Heart Valve Dis 16; 101–105PubMedGoogle Scholar
  5. 5.
    Jelic TM, Malas AM, Groves SS, Jin B, Mellen PF, Osborne G, Roque R, Rosencrance JG, Chang HH (2004) Nanobacteria-caused mitral valve calciphylaxis in a man with diabetic renal failure. South Med J 97:194–198PubMedCrossRefGoogle Scholar
  6. 6.
    Kajander EO, Ciftcioglu N (1998) Nanobacteria: an alternative mechanism for pathogenic intra- and extracellular calcification and stone formation. Proc Natl Acad Sci USA 95:8274–8279PubMedCrossRefGoogle Scholar
  7. 7.
    Miller VM, Rodgers G, Charlesworth JA, Kirkland B, Severson SR, Rasmussen TE, Yagubyan M, Rodgers JC, Cockerill FR 3rd, Folk RL, Rzewuska-Lech E, Kumar V, Farell-Baril G, Lieske JC (2004) Evidence of nanobacteriallike structures in calcified human arteries and cardiac valves. Am J Physiol Heart Circ Physiol 287:H1115–1124PubMedCrossRefGoogle Scholar
  8. 8.
    Raoult D, Drancourt M, Azza S, Nappez C, Guieu R, Rolain JM, Fourquet P, Campagna B, La Scola B, Mege JL, Mansuelle P, Lechevalier E, Berland Y, Gorvel JP, Renesto P (2008) Nanobacteria are mineralo fetuin complexes. PLoS Pathog 4:e41PubMedCrossRefGoogle Scholar
  9. 9.
    Schwartz MK, Lieske JC, Miller VM. (2010) Contribution of biologically derived nanoparticles to disease. Surgery 147:181–184PubMedCrossRefGoogle Scholar
  10. 10.
    Schwartz MK, Lieske JC, Hunter LW, Miller VM (2009) Systemic injection of planktonic forms of mammalianderived nanoparticles alters arterial response to injury in rabbits. Am J Physiol Heart Circ Physiol 296:H1434-H1441PubMedCrossRefGoogle Scholar
  11. 11.
    Sommer AP (2010) Cytotoxicity of calcium phosphate crystals and human-derived nanoparticles: an overlooked link. Circ Res 106:e10PubMedCrossRefGoogle Scholar
  12. 12.
    Sommer AP, Pavlath AE (2005) Primordial proteins and HIV. J Proteome Res 4:633–636PubMedCrossRefGoogle Scholar
  13. 13.
    Sommer AP, Milankovits M, Mester AR (2006) Nanobacteria, HIV and magic bullets–update of perspectives 2005. Chemotherapy 52:95–97PubMedCrossRefGoogle Scholar
  14. 14.
    Wu CY, Martel J, Young D, Young JD (2009) Fetuin-A/albumin-mineral complexes resembling serum calcium granules and putative nanobacteria: demonstration of a dual inhibition-seeding concept. PLoS One 4:e8058PubMedCrossRefGoogle Scholar

Schlüsselliteratur

  1. 1.
    Campbell CK et al. (1973) Fungal infection of skin and nails by Hendersonula toruloidea. Br J Derm 89:45–50CrossRefGoogle Scholar
  2. 2.
    Geramishoar M, Zomorodian K, Zaini F, Saadat F, Tarazooie B, Norouzi M, Rezaie S (2004). First case of cerebral phaeohyphomycosis caused by Nattrassia mangiferae in Iran. Jpn J Infect Dis 57:285–286PubMedGoogle Scholar
  3. 3.
    Kwon-Chung KJ, Bennett JE (1992) Medical Mycology, 2nd edn, chapter 23: Phaeohyphomycosis. Lea & Febiger, Philadelphia, London, pp 669Google Scholar
  4. 4.
    Sadeghi Tari A, Mardani M, Rahnavardi M, Asadi Amoli F, Abedinifar Z (2005) Post-traumatic fatal Nattrassia mangiferae orbital infection. Int Ophthalmol 26:247–50PubMedCrossRefGoogle Scholar
  5. 5.
    Willinger B, Kopetzky G, Harm F, Apfalter P, Makristathis A, Berer A, Bankier A, Winkler S (2004) Disseminated infection with Nattrassia mangiferae in an immunosuppressed patient. J Clin Microbiol 42:478–480PubMedCrossRefGoogle Scholar

Schlüsselliteratur

  1. 1.
    Edwards JL, Apicella MA (2004) The molecular mechanisms used by Neisseria gonorrhoeae to initiate infection differ between men and women. Clinical Microbiology Reviews 17 (4): 965–981PubMedCrossRefGoogle Scholar
  2. 2.
    Genco CA, Wetzler L (eds) (2010) Neisseria – molecular mechanisms and pathogenesis. Caister Academic PressGoogle Scholar
  3. 3.
    Handsfield HH, Sparling PF (2005) Neisseria gonorrhoeae. In: Mandell GL, Bennett JE, Dolin R (eds) Principles and Practice of Infectious Diseases, 6th edn. Elsevier Churchill Livingstone, Philadelphia, vol 2, pp 2514–2529Google Scholar
  4. 4.
    Janda WM, Gaydos CA (2007) Neisseria. In: Murray PR, Baron EJ, Jorgensen JH, Landry ML, Pfaller MA (eds) Manual of Clinical Microbiology, 9th edn. ASM Press, Washington, DC, pp 601–620Google Scholar
  5. 5.
    Tonjum T (2005) Order IV. Neisseriales ord. nov. In: Brenner DJ, Krieg NR, Staley JT, Garrity GM (eds) Bergey’s Manual of Systematic Bacteriology, 2nd edn. Springer Verlag, New York, vol 2, pp 774–798Google Scholar

Schlüsselliteratur

  1. 1.
    Cartwright K (Hrsg) (1995) Meningococcal Disease. John Wiley and Sons, New YorkGoogle Scholar
  2. 2.
    Frosch M, Maiden MCJ (Hrsg) (2006) Handbook of Meningococcal Disease. Infection Biology, Vaccination, Clinical Management. WILEY-VCH Verlag, WeinheimGoogle Scholar
  3. 3.
    Genco CA, Wetzler L (Hrsg) (2010) Neisseria. Molecular Mechanisms of Pathogenesis. Caister Academic Press, NorfalkGoogle Scholar
  4. 4.
    Pollard AJ, Maiden MCJ (Hrsg) (2001) Meningococcal Disease. Methods and Protocols. Humana Press, TotowaGoogle Scholar
  5. 5.
    Pollard AJ, Maiden MCJ (Hrsg) (2001) Meningococcal Vaccines. Methods and Protocols. Humana Press, TotowaGoogle Scholar

Schlüsselliteratur

  1. 1.
    Beaver PC, Jung RC, Cupp EW (1984) Clinical Parasitology. 9th edn. Lea & Febiger, PhiladelphiaGoogle Scholar
  2. 2.
    Burkhardt F (Begr), Neumeister B, Geiss K, Braun R, Kimmig P (Hrsg) (2009) Mikroskopische Diagnostik: Bakteriologie, Mykologie, Virologie, Parasitologie. Georg Thieme Verlag, StuttgartGoogle Scholar
  3. 3.
    Daengsvang S (1980) A monograph on the genus Gnathostoma & gnathostomiasis in Thailand. Southeast Asian Medical Information Center, TokyoGoogle Scholar
  4. 4.
    Ishikura H, Namiki M (eds) (1989) Gastric anisakiasis in Japan. Springer-Verlag, TokyoGoogle Scholar
  5. 5.
    Löscher T Burchard GD (Hrsg) (2010) Tropenmedizin in Klinik und Praxis, 4. Aufl. Georg Thieme Verlag, StuttgartGoogle Scholar
  6. 6.
    Palmer SR, Lord Soulsby, Simpson DIH (eds) (1998) Zoonoses; Oxford University Press, OxfordGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Paul Schnitzler
    • 1
  1. 1.Department für Infektiologie, VirologieUniversitätsklinikum HeidelbergHeidelberg

Personalised recommendations