Advertisement

Hightech in der Infektiologie: Diagnose und Therapie

  • Joachim J. Bugert
Chapter
  • 6.2k Downloads

Zusammenfassung

Jeden Tag sterben weltweit etwa 13 Millionen Menschen an den Folgen viraler, bakterieller oder parasitärer Erkrankungen.

Weiterführende Literatur

  1. 1.
    Chargaff E (1980) In praise of smallness- can we return to small sciene? Perspectives in Biology and Medicine 23:37Google Scholar
  2. 2.
    Daniel G, Gibson et al (2010) Creation of a Bacterial Cell Controlled by a Chemically Synthesized Genome. Science 329:52–56CrossRefGoogle Scholar
  3. 3.
    Diruggiero J, et al (2000) Evidence of recent lateral gene transfer among hyperthermophilic archaea. Mol Microbiol 38:684–693PubMedCrossRefGoogle Scholar
  4. 4.
    Florens L et al (2002) A proteomic view of the Plasmodium falciparum life cycle. Nature 419: 520–526PubMedCrossRefGoogle Scholar
  5. 5.
    Hanash S (2003) Disease proteomics. Nature 422: 226–232PubMedCrossRefGoogle Scholar
  6. 6.
    Mauch K, Buziol S, Schmid JW, Reuss M (2002) Computer aided design of metabolic Networks. AIChE Symposium Series 98:82–91Google Scholar
  7. 7.
    Münch J, Ständker L, Adermann K, at al (2007) Discovery and Optimization of a Natural HIV-1 Entry Inhibitor Targeting the gp41 Fusion Peptide. Cell 129:263–275PubMedCrossRefGoogle Scholar
  8. 8.
    Kumarasamy K, Toleman M, Walsh T et al (2010) Emergence of a new antibiotic resistance mechanism in India, Pakistan, and the UK: a molecular, biological, and epidemiological study. The Lancet Infectious Diseases.Google Scholar
  9. 9.
    Opinion (2002) Microarray standards at last. Nature 419:323Google Scholar
  10. 10.
    Pellois JP et al (2002) Individually addressable parallel peptide synthesis on microchips. Nature Biotechnol 20: 922–926CrossRefGoogle Scholar
  11. 11.
    Petricoin EF, Zoon KC, Kohn EC, Barrett JC, Liotta LA (2002) Clinical proteomics: translating benchside promise into bedside reality. Nature Rev Drug Discov 1:683–695CrossRefGoogle Scholar
  12. 12.
    Riedlinger J, Reicke A, Zähner H, Krismer B, Bull AT, Maldonado LA, Ward AC, Goodfellow M, Bister B, Bischoff D, Süssmuth RD, Fiedler HP (2004). Abyssomicins, inhibitors of the para-aminobenzoic acid pathway produced by the marine Verrucosispora strain AB-18–032. J Antibiot (Tokyo) 57:271–279Google Scholar
  13. 13.
    Schulz-Knappe P, Schrader M, Standker L et al (1997) Peptide bank generated by large-scale preparation of circulating human peptides. Journal of Chromatography 776: 125–132PubMedCrossRefGoogle Scholar
  14. 14.
    Sperstada S, Hauga T, et al (2009) Hyastatin, a glycinerich multi-domain antimicrobial peptide isolated from the spider crab (Hyas araneus) hemocytes. Molecular Immunology 46:2604–2612CrossRefGoogle Scholar
  15. 15.
    Yooseph S, Sutton G, Rusch DB, Halpern AL, Williamson SJ, et al (2007) The Sorcerer II Global Ocean Sampling Expedition: Expanding the Universe of Protein Families. PLoS Biol 5: e16PubMedCrossRefGoogle Scholar
  16. 16.
    Zhang L et al (2002) Contribution of human-defensin 1, 2 and 3 to the anti-HIV-1 activity of CD8 antiviral factor. Science 298: 995–1000PubMedCrossRefGoogle Scholar

Schlüsselliteratur

  1. 1.
    Darling ST (1909) The morphology of the parasite (Histoplasma capsulatum) and the lesions of histoplasmosis, a fatal disease of tropical America. J Exp Med 11:515–530PubMedCrossRefGoogle Scholar
  2. 2.
    de Hoog GS, Guarro J, Gene J, Figueras MJ (2000) Atlas of Clinical Fungi, 2nd edn, vol 1. Centraalbureau voor Schimmelcultures, Utrecht, The NetherlandsGoogle Scholar
  3. 3.
    Li R, Ciblak MA, Nordoff N, Pasarell L, Warnock DW, McGinnis MR (2000) In vitro activities of voriconazole, itraconazole, and amphotericin B against Blastomyces dermatitidis, Coccidioides immitis and Histoplasma capsulatum. Antimicrob. Agents Chemother 44:1734–1736CrossRefGoogle Scholar
  4. 4.
    Lortholary O, Denning DW, Dupont B (1999) Endemic mycoses: a treatment update. J Antimicrob Chemother 43:321–331PubMedCrossRefGoogle Scholar
  5. 5.
    Sebghati TS, Engle JT, Goldman WE (2000) Intracellular parasitism by Histoplasma capsulatum: Fungal virulence and calcium dependence. Science 290:1368–1372PubMedCrossRefGoogle Scholar

Schlüsselliteratur

  1. 1.
    Barre-Sinoussi F et al (1983) Isolation of a T-lymphotropic retrovirus from a patient at risk for acquired immune deficiency syndrome (AIDS). Science 220:868–871PubMedCrossRefGoogle Scholar
  2. 2.
    Clavel F et al (1986) Molecular cloning and polymorphism of the human immune deficiency virus type 2. Nature 324:691–695PubMedCrossRefGoogle Scholar
  3. 3.
    Haase AT (2005) Perils at mucosal front lines for HIV and SIV and their hosts. Nat Rev Immunol 5:783–792PubMedCrossRefGoogle Scholar
  4. 4.
    Hahn BH, Shaw GM, De Cock KM, Sharp PM (2000) AIDS as a zoonosis: scientific and public health implications. Science 287:607–614PubMedCrossRefGoogle Scholar
  5. 5.
    Schindler M et al (2006) Nef-Mediated Suppression of T Cell Activation Was Lost in a Lentiviral Lineage that Gave Rise to HIV-1. Cell 125:1055–1067PubMedCrossRefGoogle Scholar
  6. 6.
    Simon V, Ho DD (2003) HIV-1 dynamics in vivo: implications for therapy. Nat Rev Microbiol 1:181–190PubMedCrossRefGoogle Scholar
  7. 7.
    Stevenson M (2003) HIV-1 pathogenesis. Nat Med 9:853–860PubMedCrossRefGoogle Scholar

Schlüsselliteratur

  1. 1.
    Gross GE, Barasso R (1997) Human Papilloma Virus Infection – A clinical atlas. Ullstein Mosby Verlag, Berlin-WiesbadenGoogle Scholar
  2. 2.
    Howley PM, Lowy DR (2007) Papillomaviruses. In: Knipe DM, Howley PM (Hrsg) Fields Virology, 5th edn. Lippincott Williams & Wilkins, Philadelphia, p 2299–2354Google Scholar
  3. 3.
    Pfister H (2008) HPV und Neoplasien der Haut. Der Hautarzt 59:26–30CrossRefGoogle Scholar
  4. 4.
    Schiller JT, Lowy DR (2010) Vaccines to prevent infections by oncoviruses. Annu Rev Microbiol 64:23–41PubMedCrossRefGoogle Scholar
  5. 5.
    Zur Hausen H (2002) Papillomaviruses and cancer: from basic studies to clinical application. Nat Rev Cancer 2:342–350PubMedCrossRefGoogle Scholar

Schlüsselliteratur

  1. 1.
    Feuer G, Green PL, (2005) Comparative biology of human T-cell lymphotropic viruy type 1 (HTLV-1) and HTLV-2. Oncogene 39:5996–6004CrossRefGoogle Scholar
  2. 2.
    Saito M (2010) Immunogenetics and the Pathological Mechanisms of Human T-Cell Leukemia Virus Type 1- (HTLV-1) Associated Myelopathy/Tropical Spastic Paraparesis (HAM/TSP), Interdisciplinary Perspectives on Infectious Diseases, Volume 2010, Article ID 478461, 8 pagesCrossRefGoogle Scholar
  3. 3.
    Tsukasaki K et al (2009) Definition, Prognostic Factors, Treatment and Response Criteria of Adult T-Cell Leukemia-Lymphoma: A Proposal from an International Consensus Meeting, Journal of Clinical Oncology 27(3):453–459PubMedCrossRefGoogle Scholar

Schlüsselliteratur

  1. 1.
    Broccolo F, Drago F, Paolino S, Cassina G, Gatto F, Fusetti L, Matteoli B, Zaccaria E, Parodi A, Lusso P, Ceccherini-Nelli L, Malnati MS (2009) Reactivation of human herpesvirus 6 (HHV-6) infection in patients with connective tissue diseases. J Clin Virol. 46(1):43–46PubMedCrossRefGoogle Scholar
  2. 2.
    Crawford JR, Santi MR, Thorarinsdottir HK, Cornelison R, Rushing EJ, Zhang H, Yao K, Jacobson S, Macdonald TJ (2009) Detection of human herpesvirus-6 variants in pediatric brain tumors: association of viral antigen in low grade gliomas. J Clin Virol 46(1):37–42PubMedCrossRefGoogle Scholar
  3. 3.
    De Bolle L, Naesens L, De Clercq E (2005). Update on human herpesvirus 6 biology, clinical features, and therapy. Clin Microbiol Rev 18:217–245PubMedCrossRefGoogle Scholar
  4. 4.
    Pellet PE, Dollard SC (2000) Human Herpesviruses 6, 7 and 8. In: Specter S, Hodinka RL, Young SA Clinical Virology Manual, 3rd edn. ASM Press, Washington DCGoogle Scholar
  5. 5.
    Zerr DM (2006) Human herpesvirus 6: a clinical update. Herpes 13:20–24PubMedGoogle Scholar

Schlüsselliteratur

  1. 1.
    Lopez C (1993) Human Herpesviruses 6 and 7- molecular biology and clinical aspects. In: Roizman B, Whitley RJ, Lopez C (eds) The human herpesviruses. Raven Press Ltd, New YorkGoogle Scholar
  2. 2.
    Pellet PE, Black JB (1996) Human Herpesvirus 7. In: Fields BN, Knipe DM, Howley PM et al. (eds) Fields Virology, 3rd edn. Lippincottt-Raven Publ, PhiladelphiaGoogle Scholar
  3. 3.
    Pellet PE, Dollard SC (2000) Human Herpesviruses 6, 7 and 8. In: Specter S, Hodinka L, Young SA Clinical Virology Manual, 3rd edn. ASM Press, Washington DCGoogle Scholar

Schlüsselliteratur

  1. 1.
    Chang Y, Cesarman E, Pessin MS, Lee F, Culpepper J, Knowles DM, Moore PS (1994) Identification of herpesvirus-like DNA sequences in AIDS-associated Kaposi’s sarcoma. Science 266:1865–1869PubMedCrossRefGoogle Scholar
  2. 2.
    Edelman DC (2005) Human herpesvirus 8 – A novel human pathogen,Virology Journal 2:78CrossRefGoogle Scholar
  3. 3.
    Russo JJ, Bohenzky RA, Chien MC, Chen J, Yan M, Maddalena D, Parry JP, Peruzzi D, Edelman IS, Chang Y, Moore PS (1996) Nucleotide sequence of the Kaposi sarcoma-associated herpesvirus (HHV8). Proc Natl Acad Sci USA 93:14862–14867PubMedCrossRefGoogle Scholar

Schlüsselliteratur

  1. 1.
    Collins PL, Crowe JE (2007) Respiratory Syncytial Virus and Metapneumovirus. In: Knipe DM, Howley PM (Eds.) Fields Virology. Lippincott-Williams & Wilkins, Philadelphia, pp 1601–1646Google Scholar
  2. 2.
    Hermos CR, Vargas So, McAdam AJ (2010) Human Metapneumovirus. Clin Lab Med 30:131–148PubMedCrossRefGoogle Scholar
  3. 3.
    Van Den Hoogen BG, de Jong JC, Groen J et al (2001) A newly discovered human pneumovirus isolated from young children with respiratory tract infections. Nat Med 7:719–724PubMedCrossRefGoogle Scholar

Schlüsselliteratur

  1. 1.
    Achong G, Mansell PWA, Epstein MA, Clifford P (1971) An unusual virus in cultures from a human nasopharyngeal carcinoma. J Natl Cancer Inst 42:299–307Google Scholar
  2. 2.
    Aguzzi A, Marino S, Tschopp R, Rethwilm A (1996) Regulation of expression and pathogenic potential of human foamy virus in vitro and in transgenic mice. Current Topics Microbiol Immunol 206:243–273CrossRefGoogle Scholar
  3. 3.
    Banner, H, Muranyi W, Ogryzko VV, Nakatani Y, Flügel RM (2004) Coactivators p300 and PCAF physically and functionally with the foamy viral transactivator. BioMed Central Mol Biol 5:16Google Scholar
  4. 4.
    Cullen BR (2006) Role and mechanism of action of the APOBEC3 family of antiretroviral resistance factors. J Virol 80:1067–1076PubMedCrossRefGoogle Scholar
  5. 5.
    Löchelt M, Flügel RM (1995) The molecular biology of human and primate spuma retroviruses. In: Levy JA (ed) The Retroviridae, Vol4. Plenum Press, New York, pp 239–292Google Scholar
  6. 6.
    Rethwilm A (2003) Foamy Viruses. Current Topics Microbiol Immunol 277:1–211CrossRefGoogle Scholar
  7. 7.
    Wagner A Doerks A, Aboud M, Alonso A, Tokino T, Flügel RM, Löchelt M (2000) Induction of cellular genes is mediated by the Bel 1transactivator in foamy-virus infected human cells. J Virol 74:4441–4447PubMedCrossRefGoogle Scholar

Schlüsselliteratur

  1. 8.
    Beaver PC, Jung RC, Cupp EW (1984) Clinical Parasitology. 9th edn. Lea & Febiger, PhiladelphiaGoogle Scholar
  2. 9.
    Guerrant RL, Walker DH, Weller PF (2010) Tropical Infectious Diseases; Principles, Pathogens, & Practice. Third Edition. Elsevier Churchill Livingstone Inc, PhiladelphiaGoogle Scholar
  3. 10.
    Löscher T, Burchard GD (Hrsg) (2010) Tropenmedizin in Klinik und Praxis. 4. Aufl. Georg Thieme Verlag, StuttgartGoogle Scholar
  4. 11.
    Lucius R, Frank-Loos B (2008) Biologie von Parasiten. Springer-Verlag Berlin, HeidelbergGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Joachim J. Bugert
    • 1
  1. 1.Department of Infection Immunity and Biochemistry/Microbiology SectionCardiff University School of Medicine/Wales College of MedicineCardiffUK

Personalised recommendations