Modelling Postures of Human Movements

  • Djamila Medjahed Gamaz
  • Houssem Eddine Gueziri
  • Nazim Haouchine
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6419)

Abstract

The goal of this paper is to present a novel modelling of postures of human activities such us walk, run...Effectively, human action is, in general, characterized by a sequence of specific body postures. So, from an incoming sequence video, we determine the postures (key-frames) which will represent the movement. We construct the prototypes corresponding to these key-frames by thinning these postures, and then we use this skeleton as a starting point for building the model. Some results are presented to validate our models.

Keywords

Human Activities Modelling Shape Matching Skeleton thinning 

References

  1. 1.
    Moeslund, T.B., Granum, E.: A Survey of computer vision-based human motion capture. Computer Vision and Image Understanding 81, 231–268 (2001)CrossRefMATHGoogle Scholar
  2. 2.
    Gavrila, D.M.: The visual analysis of human movement: a survey. Computer Vision and Image Understanding 73(1), 82–98 (1999), http://www.idealibrary.com CrossRefMATHGoogle Scholar
  3. 3.
    Aggarwal, J.K., Cai, O.: Human motion analysis: a review. Computer Vision and Image Understanding 73(3) (1999)Google Scholar
  4. 4.
    Bermermann, H.J.: Cybernetic functional and fuzzy sets. In: IEEE Systems, Man and Cybernetics Group Annual Symposium, pp. 248–254 (1971)Google Scholar
  5. 5.
    Sclaroff, S.: Deformable prototypes for encoding shape categories in image databases. Pattern Recognition 30(4), 627–640 (1996)CrossRefGoogle Scholar
  6. 6.
    Belongie, S., Malik, J.: Matching with shape contexts. In: IEEE Workshop on Content-based Access of Image and Video Libraries (June 2000)Google Scholar
  7. 7.
    Carlson, S.: Order structure, correspondence and shape based categories. In: Forsyth, D., Mundy, J.L., Di Gesú, V., Cipolla, R. (eds.) Shape, Contour, and Grouping in Computer Vision. LNCS, vol. 1681, pp. 58–71. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  8. 8.
    Liu., T.L., Geiger, D.: Approximate tree matching and shape similarity. In: Proceeding of the IEEE International Conference on Computer Vision, Corfu, Greece, pp. 456–462 (1999)Google Scholar
  9. 9.
    Sharvit, D., Chan, J., Tek, H., Kimia, B.B.: Symmetry-based indexing of image database. J. Visual Commun. Image Representation 9(4), 366–380 (1998)CrossRefGoogle Scholar
  10. 10.
    Siddiqi, K., Bouix, S., Tannenbaum, A., Zuker, S.W.: The Hamilton-Jacobi Skeleton. In: Proceeding of the IEEE International Conference on Computer Vision, Corfu, Greece, pp. 828–834 (1999)Google Scholar
  11. 11.
    Xie, J., Heng, P.A., Shaha, M.: Shape matching and modelling using skeletal context. Pattern Recognition 41, 1756–1767 (2008)CrossRefMATHGoogle Scholar
  12. 12.
    Goh, W.-B.: Strategies for shape matching using skeletons. Computer Vision and Image Understanding 110, 326–345 (2008)CrossRefGoogle Scholar
  13. 13.
    Carlsonn, S., Sullivan, S.: Action Recognition by shape matching to Key Frame. In: Workshop on Models versus Exemplars in Computer Vision at CVPR (2001)Google Scholar
  14. 14.
    Kellokumpu, V., Pietikanen, M., Heikkila, J.: Human Activity Recognition Using Sequences of Postures. In: IAPR Conference on Machine Vision Applications (MVA 2005), Tsukuba Science City, Japan, pp. 570–573 (2005)Google Scholar
  15. 15.
    Huang, L., Wan, G., Liu, C.: An improved parallel thinning algorithm. In: ICDAR, vol. 02, p. 780 (2003)Google Scholar
  16. 16.
    Jang, B.K., Chin, R.T.: One-pass parallel thinning: analysis, properties, and quantitative evaluation. IEEE Transactions Pattern Analysis and Machine Intelligence 14(11), 1129–1140 (1992)CrossRefGoogle Scholar
  17. 17.
    Schuldt, Laptev, Caputo: Proc. ICPR 2004, Cambridge, UK (2004)Google Scholar
  18. 18.
    Achard, C., Qu, X., Mokhber, A., Milgram, M.: A novel approach for recognition of human actions with semi-global features. Machine Vision and Applications 19, 27–34 (2008)CrossRefGoogle Scholar
  19. 19.
    Ronse, C.: Pixel simple et nombres de Yokoi, LSIIT URM 7005 CNRS-ULP, Département d’informatique (2007), http://arthure.u-strasbg.fr/~ronse/TIDOC/index.html
  20. 20.
    Djahromi, A.K.: Binary Image Processing, Department of Electrical Engineering University of Texas at Arlington, http://www-ee.uta.edu/Online/Devarajan/ee6358/BinaryImage.pdf

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Djamila Medjahed Gamaz
    • 1
  • Houssem Eddine Gueziri
    • 1
  • Nazim Haouchine
    • 1
  1. 1.Computer Science DepartementUSTHB UniversityEl AliaAlgeria

Personalised recommendations