Ubiquitous Data

  • Andreas Hotho
  • Rasmus Ulslev Pedersen
  • Michael Wurst
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6202)


Ubiquitous knowledge discovery systems must be captured from many different perspectives. In earlier chapters, aspects like machine learning, underlying network technologies etc. were described. An essential component, which we shall discuss now, is still missing: Ubiquitous Data. While data themselves are a central part of the knowledge discovery process, in a ubiquitous setting new challenges arise. In this context, the emergence of data itself plays a large role, therefore we label this part of KDubiq systems ubiquitous data. It clarifies the KDubiq challenges related to the multitude of available data and what we must do before we can tap into this rich information source.


Sensor Network Sensor Node Wireless Sensor Network Sensor Fusion Data Mining Process 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Hand, D., Mannila, H., Smyth, P.: Principles of Data Mining. MIT Press, Cambridge (2001)Google Scholar
  2. 2.
    Giannotti, F., Pedreschi, D. (eds.): Mobility, privacy, and geography: a knowledge discovery perspective. Springer, Heidelberg (2008)Google Scholar
  3. 3.
    Shirky, C.: Listening to Napster. In: [4], pp. 21–37Google Scholar
  4. 4.
    Oram, A. (ed.): Peer-to-Peer. O’Reilly, Sebastopol (2001)Google Scholar
  5. 5.
    Weiß, G. (ed.): Multiagent Systems: A Modern Approach to Distributed Artificial Intelligence. MIT Press, Cambridge (1999)Google Scholar
  6. 6.
    Golder, S., Huberman, B.A.: The structure of collaborative tagging systems (2005)Google Scholar
  7. 7.
    Hammond, T., Hannay, T., Lund, B., Scott, J.: Social Bookmarking Tools (I). D-Lib Magazine (2005)Google Scholar
  8. 8.
    Jäschke, R., Hotho, A., Schmitz, C., Stumme, G.: Analysis of the publication sharing behaviour in BibSonomy. In: Priss, U., Polovina, S., Hill, R. (eds.) ICCS 2007. LNCS (LNAI), vol. 4604, pp. 283–295. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  9. 9.
    Flasch, O., Kaspari, A., Morik, K., Wurst, M.: Aspect-based tagging for collaborative media organisation. In: Proceedings of the ECML/PKDD Workshop on Ubiquitous Knowledge Discovery for Users (2006)Google Scholar
  10. 10.
    Stumme, G., Hotho, A., Berendt, B.: Semantic web mining - state of the art and future directions. Journal of Web Semantics 4(2), 124–143 (2006)CrossRefGoogle Scholar
  11. 11.
    Schmitz, C., Hotho, A., Jschke, R., Stumme, G.: Mining association rules in folksonomies. In: Batagelj, V., Bock, H.H., Ferligoj, A., Ziberna, A. (eds.) Data Science and Classification. Proceedings of the 10th IFCS Conf. Studies in Classification, Data Analysis and Knowledge Organization, pp. 261–270. Springer, Heidelberg (2006)Google Scholar
  12. 12.
    Mika, P.: Ontologies are us: A unified model of social networks and semantics. In: Gil, Y., Motta, E., Benjamins, V.R., Musen, M.A. (eds.) ISWC 2005. LNCS, vol. 3729, pp. 522–536. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  13. 13.
    Hotho, A., Jäschke, R., Schmitz, C., Stumme, G.: Information retrieval in folksonomies: Search and ranking. In: Sure, Y., Domingue, J. (eds.) ESWC 2006. LNCS, vol. 4011, pp. 411–426. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  14. 14.
    Cattuto, C., Schmitz, C., Baldassarri, A., Servedio, V.D.P., Loreto, V., Hotho, A., Grahl, M., Stumme, G.: Network properties of folksonomies. AI Communications 20(4), 245–262 (2007)MathSciNetGoogle Scholar
  15. 15.
    Decker, S., Frank, M.R.: The Networked Semantic Desktop. In: Proc. WWW Workshop on Application Design, Development and Implementation Issues in the Semantic Web, New York (2004)Google Scholar
  16. 16.
    Decker, S., Park, J., Quan, D., Sauermann, L. (eds.): The Semantic Desktop - Next Generation Information Management & Collaboration Infrastructure. Proc. of Semantic Desktop Workshop at the ISWC 2005, CEUR Workshop Proceedings, vol. 175 (2005), ISSN: 1613–0073Google Scholar
  17. 17.
    Decker, S., Park, J., Sauermann, L., Auer, S., Handschuh, S. (eds.): Proceedings of the Semantic Desktop and Social Semantic Collaboration Workshop (SemDesk 2006) at the ISWC 2006, Proceedings of the Semantic Desktop and Social Semantic Collaboration Workshop (SemDesk 2006) at the ISWC 2006. CEUR-WS, vol. 202 (2006)Google Scholar
  18. 18.
    Wurst, M., Morik, K.: Distributed feature extraction in a p2p setting - a case study. Future Generation Computer Systems, Special Issue on Data Mining (2006)Google Scholar
  19. 19.
    Madden, S.R., Franklin, M.J., Hellerstein, J.M., Hong, W.: Tinydb: an acquisitional query processing system for sensor networks. ACM Trans. Database Syst. 30(1), 122–173 (2005)CrossRefGoogle Scholar
  20. 20.
    Pedersen, R.U.: Tinyos education with lego mindstorms nxt. In: Gama, J., Gaber, M.M. (eds.) Learning from Data Streams. Processing Techniques in Sensor Networks, pp. 231–241. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  21. 21.
    Andrienko, N., Andrienko, A., Pelekis, N., Spaccapietra, S.: Basic concepts of movement data. In: Mobility, Privacy and Geography: a Knowledge Discovery Perspective. Springer, Heidelberg (2008)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Andreas Hotho
    • 1
  • Rasmus Ulslev Pedersen
    • 2
  • Michael Wurst
    • 3
  1. 1.Depart. of Electrical Engineering/Computer Science Knowledge and Data Engineering GroupUniversity KasselGermany
  2. 2.Dept. of Informatics, Embedded Software LabCopenhagen Business SchoolCopenhagenDenmark
  3. 3.Computer Science LS8Technical University DortmundDortmundGermany

Personalised recommendations