Calculating Service Fitness in Service Networks

  • Martin Treiber
  • Vasilios Andrikopoulos
  • Schahram Dustdar
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6275)


Inspired by the biological perspective of service ecosystems, we propose to define the fitness of services in service networks. In our work, we show how to calculate the service fitness from the provider perspective using locally available information as a reflection of the position of the service in the service network. For that purpose we define a fitness corridor with upper and lower bounds that confine the service fitness area. After establishing a fitness corridor, we show how to calibrate the fitness calculation parameters to better reflect the service market and how to use the calculated fitness trends for making decisions about the provisioning of a service.


Service Provider Service Ecosystem Service Network Composite Service Service Market 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Papazoglou, M.P.: The challenges of service evolution. In: Bellahsène, Z., Léonard, M. (eds.) CAiSE 2008. LNCS, vol. 5074, pp. 1–15. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  2. 2.
    Treiber, M., Truong, H.L., Dustdar, S.: Semf - service evolution management framework. In: 34th Euromicro Conference on Software Engineering and Advanced Applications, SEAA 2008, pp. 329–336 (2008)Google Scholar
  3. 3.
    Barros, A.P., Dumas, M.: The rise of web service ecosystems. IT Professional 8(5), 31–37 (2006)CrossRefGoogle Scholar
  4. 4.
    Bitsaki, M., Danylevych, O., van den Heuvel, W.J., Koutras, G., Leymann, F., Mancioppi, M., Nikolaou, C., Papazoglou, M.: An architecture for managing the lifecycle of business goals for partners in a service network. Towards a Service-Based Internet, 196–207 (2008)Google Scholar
  5. 5.
    Macfarlane, P.: Structuring and measuring the size of business markets. International Journal of Market Research 44(1), 7–30 (2002)Google Scholar
  6. 6.
    Alsonso, G., Casati, F., Kuno, H., Machiraju, V.: Web Services – Concepts, Architectures and Applications. Springer, Heidelberg (2004)zbMATHGoogle Scholar
  7. 7.
    Microsoft: Uddi shutdown (2006)Google Scholar
  8. 8.
    Metropolis, N., Ulam, S.: The monte carlo method. Journal of the American Statistical Association 44(247), 335–341 (1949)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Ahmadi, N., Binder, W.: Flexible matching and ranking of web service advertisements. In: MW4SOC 2007: Proceedings of the 2nd workshop on Middleware for service oriented computing, pp. 30–35. ACM, New York (2007)Google Scholar
  10. 10.
    Lehman, M.M., Ramil, J.F.: Software evolution: background, theory, practice. Inf. Process. Lett. 88, 33–44 (2003)CrossRefzbMATHGoogle Scholar
  11. 11.
    Lehman, M.M.: Laws of software evolution revisited. In: Montangero, C. (ed.) EWSPT 1996. LNCS, vol. 1149, pp. 108–124. Springer, Heidelberg (1996)CrossRefGoogle Scholar
  12. 12.
    Cook, S., Harrison, R., Lehman, M.M., Wernick, P.: Evolution in software systems: foundations of the spe classification scheme: Research articles. J. Softw. Maint. Evol. 18(1), 1–35 (2006)CrossRefGoogle Scholar
  13. 13.
    Nehaniv, C.L., Hewitt, J., Christianson, B., Wernick, P.: What software evolution and biological evolution dont have in common. software-evolvability, 58–65 (2006)Google Scholar
  14. 14.
    Allee, V.: Reconfiguring the value network. Journal of Business Strategy 21(4) (2000)Google Scholar
  15. 15.
    Basole, R.C., Rouse, W.B.: Complexity of service value networks: conceptualization and empirical investigation. IBM Syst. J. 47(1), 53–70 (2008)CrossRefGoogle Scholar
  16. 16.
    Caswell, N.S., Nikolaou, C., Sairamesh, J., Bitsaki, M., Koutras, G.D., Iacovidis, G.: Estimating value in service systems: a case study of a repair service system. IBM Syst. J. 47(1), 87–100 (2008)CrossRefGoogle Scholar
  17. 17.
    Juszczyk, L., Truong, H.L., Dustdar, S.: Genesis - a framework for automatic generation and steering of testbeds of complexweb services. In: ICECCS 2008: Proceedings of the 13th IEEE International Conference on on Engineering of Complex Computer Systems, Washington, DC, USA, pp. 131–140. IEEE Computer Society, Los Alamitos (2008)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Martin Treiber
    • 1
  • Vasilios Andrikopoulos
    • 2
  • Schahram Dustdar
    • 1
  1. 1.Distributed Systems GroupVienna University of TechnologyAustria
  2. 2.ERISS, Dept. of Information Systems and ManagementTilburg UniversityNetherlands

Personalised recommendations