Genetic Algorithms and Tabu Search for Correcting Lanes in DNA Images

  • M. J. Angélica Pinninghoff
  • Q. Daniel Venegas
  • A. Ricardo Contreras
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6256)

Abstract

This paper describes an experience that combines Genetic Algorithms and Tabu Search as a mechanism for correcting lanes in DNA images obtained through Random Amplified Polymorphism DNA (RAPD) technique. RAPDs images are affected by various factors; among these factors, the noise and distortion that impact the quality of images, and subsequently, accuracy in interpreting the data. This work proposes a hybrid method that uses genetic algorithms, for dealing with the highly combinatorial feature of this problem, and tabu search, for dealing with local optimum. The results obtained by using them in this particular problem show an improvement in both, fitness of individuals and execution time.

Keywords

Genetic Algorithm Execution Time Tabu Search Inter Simple Sequence Repeat Hybrid Algorithm 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Cao, W., Scoles, G., Hucl, P., Chibbar, R.: Philogenetic Relationships of Five Morphological Group of Hexaploid wheat Based on RAPD Analysis. Genome. 43, 724–727 (2000)CrossRefGoogle Scholar
  2. 2.
    Casasoli, M., Mattioni, C., Cherubini, M., Villani, F. A Genetic Linkage Map of European Chestnut (Castanea Sativa Mill.) Nased on RAPD, ISSR and Isozime Markers. Theoretical Applied Genetics 102, 1190–1199 (2001)Google Scholar
  3. 3.
    Floreano, D., Mattiussi, C.: Bio-Inspired Artificial Intelligence. Theories, Methods, and Technologies. MIT Press, Cambridge (2008)Google Scholar
  4. 4.
    Glover, F., Laguna, M.: Tabu Search. Springer, Heidelberg (1997)CrossRefMATHGoogle Scholar
  5. 5.
    Groos, C., Gay, G., Perrenant, M., Gervais, L., Bernard, M., Dedryver, F., Charmet, G.: Study of the Relationships Between Pre-harvest Sprouting and Grain Color by Quantitative Trait Loci Analysis in the White X Red Grain Bread-wheat Cross. Theoretical Applied Genetics 104, 39–47 (2002)CrossRefGoogle Scholar
  6. 6.
    Herrera, R., Cares, V., Wilkinson, M., Caligarip, D.: Characterization of Genetic Variations Between Vitis vinifera Cultivars from Central Chile Using RAPD and Inter Simple Sequence Repeat Markers. Euphytica 124, 139–145 (2002)CrossRefGoogle Scholar
  7. 7.
    Pinninghoff, M.A., Contreras, R., Rueda, L.: An evolutionary approach for correcting random amplified polymorphism DNA images. In: Mira, J., Ferrández, J.M., Álvarez, J.R., de la Paz, F., Toledo, F.J. (eds.) IWINAC 2009. LNCS, vol. 5602, pp. 469–477. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  8. 8.
    Rueda, L., Uyarte, O., Valenzuela, S., Rodriguez, J.: Processing Random Amplified Polymorphism DNA Images Using the Radon Transform and Mathematical Morphology. In: Kamel, M.S., Campilho, A. (eds.) ICIAR 2007. LNCS, vol. 4633, pp. 1071–1081. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  9. 9.
    Saal, B., Struss, D.: RGA-and RAPD-derived SCAR Markers for a Brassica B-Genome Introgression Conferring Resistance to Blackleg Oil Seed in Oil Seed Rape. Theoretical Applied Genetics 111, 281–290 (2005)CrossRefGoogle Scholar
  10. 10.
    Sudapak, M., Akkaya, M., Kence, A.: Analysis of Genetic Relationships Among Perennial and Annual Cicer Species Growing in Turkey Using RAPD Markers. Theoretical Applied Genetics 105, 1220–1228 (2002)CrossRefGoogle Scholar
  11. 11.
    Tripathi, S., Mathish, N., Gurumurthi, K.: Use of Genetic Markers in the Management of Micropropagated Eucalyptus Germplasm. New Forests 31, 361–372 (2006)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • M. J. Angélica Pinninghoff
    • 1
  • Q. Daniel Venegas
    • 1
  • A. Ricardo Contreras
    • 1
  1. 1.Department of Computer ScienceUniversity of ConcepciónChile

Personalised recommendations