Tensor Sparse Coding for Region Covariances

  • Ravishankar Sivalingam
  • Daniel Boley
  • Vassilios Morellas
  • Nikolaos Papanikolopoulos
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6314)


Sparse representation of signals has been the focus of much research in the recent years. A vast majority of existing algorithms deal with vectors, and higher–order data like images are usually vectorized before processing. However, the structure of the data may be lost in the process, leading to poor representation and overall performance degradation. In this paper we propose a novel approach for sparse representation of positive definite matrices, where vectorization would have destroyed the inherent structure of the data. The sparse decomposition of a positive definite matrix is formulated as a convex optimization problem, which falls under the category of determinant maximization (MAXDET) problems [1], for which efficient interior point algorithms exist. Experimental results are shown with simulated examples as well as in real–world computer vision applications, demonstrating the suitability of the new model. This forms the first step toward extending the cornucopia of sparsity-based algorithms to positive definite matrices.


Face Recognition Sparse Representation Sparse Code Region Covariance Pedestrian Detection 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Vandenberghe, L., Boyd, S., Wu, S.: Determinant Maximization with Linear Matrix Inequality Constraints. SIAM Journal on Matrix Analysis and Applications (19), 499–533 (1998)Google Scholar
  2. 2.
    Tibshirani, R.: Regression shrinkage and selection via the Lasso. J. Roy. Statist. Soc. Ser. B 58(1), 267–288 (1996)zbMATHMathSciNetGoogle Scholar
  3. 3.
    Efron, B., Hastie, T., Johnstone, I., Tibshirani, R.: Least Angle Regression. Annals of Statistics 32(2), 407–499 (2004)zbMATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Tropp, J., Gilbert, A.: Signal Recovery from Random Measurements via Orthogonal Matching Pursuit. IEEE Transactions on Information Theory 53(12), 4655–4666 (2007)CrossRefMathSciNetGoogle Scholar
  5. 5.
    Donoho, D.: Compressed Sensing. IEEE Transactions on Information Theory 52(4), 1289–1306 (2006)CrossRefMathSciNetGoogle Scholar
  6. 6.
    Candès, E., Wakin, M.: An Introduction to Compressive Sampling. IEEE Signal Processing Magazine 25(2), 21–30 (2008)CrossRefGoogle Scholar
  7. 7.
    Wright, J., Yi, M., Mairal, J., Sapiro, G., Huang, T.S., Yan, S.: Sparse Representation for Computer Vision and Pattern Recognition. Proceedings of the IEEE 98(6), 1031–1044 (2010)CrossRefGoogle Scholar
  8. 8.
    Hazan, T., Polak, S., Shashua, A.: Sparse Image Coding Using a 3D Non-negative Tensor Factorization. In: International Conference of Computer Vision, pp. 50–57 (2005)Google Scholar
  9. 9.
    Müller, K.R., Mika, S., Rätsch, G., Tsuda, K., Schölkopf, B.: An introduction to Kernel-based Learning Algorithms. IEEE Transactions on Neural Networks 12(2), 181–201 (2001)CrossRefGoogle Scholar
  10. 10.
    Tuzel, O., Porikli, F., Meer, P.: Region Covariance: A Fast Descriptor for Detection and Classification. In: Leonardis, A., Bischof, H., Pinz, A. (eds.) ECCV 2006. LNCS, vol. 3952, pp. 697–704. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  11. 11.
    Porikli, F., Tuzel, O.: Fast Construction of Covariance Matrices for Arbitrary Size Image Windows. In: Proceedings of IEEE International Conference on Image Processing, pp. 1581–1584 (2006)Google Scholar
  12. 12.
    Tuzel, O., Porikli, F., Meer, P.: Pedestrian Detection via Classification on Riemannian Manifolds. IEEE Transactions on Pattern Analysis and Machine Intelligence 30(10), 1713–1727 (2008)CrossRefGoogle Scholar
  13. 13.
    Pennec, X., Fillard, P., Ayache, N.: A Riemannian Framework for Tensor Computing. International Journal of Computer Vision 66(1), 41–66 (2005)CrossRefGoogle Scholar
  14. 14.
    Pang, Y., Yuan, Y., Li, X.: Gabor-Based Region Covariance Matrices for Face Recognition. IEEE Transactions on Circuit and Systems for Video Technology 18(7), 989–993 (2008)CrossRefGoogle Scholar
  15. 15.
    Hu, H., Qin, J., Lin, Y., Xu, Y.: Region Covariance based Probabilistic Tracking. In: 7th World Congress on Intelligent Control and Automation, pp. 575–580 (2008)Google Scholar
  16. 16.
    Palaio, H., Batista, J.: Multi-object Tracking using an Adaptive Transition Model Particle Filter with Region Covariance Data Association. In: 19th International Conference on Pattern Recognition, pp. 1–4 (2008)Google Scholar
  17. 17.
    Paisitkriangkrai, S., Shen, C., Zhang, J.: Fast Pedestrian Detection Using a Cascade of Boosted Covariance Features. IEEE Transactions on Circuits and Systems for Video Technology 18(8), 1140–1151 (2008)CrossRefGoogle Scholar
  18. 18.
    Sivalingam, R., Morellas, V., Boley, D., Papanikolopoulos, N.: Metric Learning for Semi-supervised Clustering of Region Covariance Descriptors. In: Proceedings of ACM/IEEE International Conference on Distributed Smart Cameras, pp. 1–8 (2009)Google Scholar
  19. 19.
    Davis, J.V., Kulis, B., Jain, P., Sra, S., Dhillon, I.S.: Information-Theoretic Metric Learning. In: Proceedings of International Conference on Machine Learning, pp. 209–216 (2007)Google Scholar
  20. 20.
    Kulis, B., Sustik, M., Dhillon, I.: Learning Low-Rank Kernel Matrices. In: Proceedings of the 23rd International Conference on Machine Learning, pp. 505–512 (2006)Google Scholar
  21. 21.
    Banerjee, S., Merugu, S., Dhillon, I.S., Ghosh, J.: Clustering with Bregman Divergences. Journal of Machine Learning Research 6, 1705–1749 (2005)zbMATHMathSciNetGoogle Scholar
  22. 22.
    Wishart, J.: The Generalised Product Moment Distribution in Samples from a Normal Multivariate Population. Biometrika 20A(1/2), 32–52 (1928)CrossRefGoogle Scholar
  23. 23.
    Wang, S., Jin, R.: An Information Geometry Approach for Distance Metric Learning. In: Proceedings of the 12th International Conference on Artificial Intelligence and Statistics, pp. 591–598 (2009)Google Scholar
  24. 24.
    Tropp, J.: Just Relax: Convex Programming Methods for Identifying Sparse Signals in Noise. IEEE Transactions on Information Theory 52(3), 1030–1051 (2006)CrossRefMathSciNetGoogle Scholar
  25. 25.
    Grant, M., Boyd, S.: CVX: Matlab Software for Disciplined Convex Programming, ver. 1.21 (2010),
  26. 26.
    Donoho, D., Tanner, J.: Sparse Nonnegative Solution of Underdetermined Linear Equations by Linear Programming. Proceedings of the National Academy of Sciences 102(27), 9446–9451 (2005)CrossRefMathSciNetGoogle Scholar
  27. 27.
    Donoho, D., Stodden, V.: When does Non-negative Matrix Factorization give a Correct Decomposition into Parts? In: Thrun, S., Saul, L., Sch’́olkopf, B. (eds.) Advances in Neural Information Processing Systems, vol. 16, pp. 1141–1148. MIT Press, Cambridge (2004)Google Scholar
  28. 28.
    Lee, D.D., Seung, H.S.: Algorithms for Non-negative Matrix Factorization. In: Leen, T.K., Dietterich, T.G., Tresp, V. (eds.) Advances in Neural Information Processing Systems, vol. 13, pp. 556–562. MIT Press, Cambridge (2000)Google Scholar
  29. 29.
    Chang, C.-C., Lin, C.-J.: LIBSVM: A Library for Support Vector Machines (2001),
  30. 30.
    Wright, J., Yang, A., Ganesh, A., Sastri, S.S., Ma, Y.: Robust Face Recognition via Sparse Representation. IEEE Transactions on Pattern Analysis and Machine Intelligence 31(2), 210–227 (2009)CrossRefGoogle Scholar
  31. 31.
    Phillips, P.J., Moon, H., Rizvi, S.A., Rauss, P.J.: The FERET Evaluation Methodology for Face-recognition Algorithms. IEEE Transactions on Pattern Analysis and Machine Intelligence 22(10), 1090–1104 (2000)CrossRefGoogle Scholar
  32. 32.
    Randen, T., Husoy, J.H.: Filtering for Texture Classification: A Comparative Study. IEEE Transactions on Pattern Analysis and Machine Intelligence 21(4), 291–310 (2009)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Ravishankar Sivalingam
    • 1
  • Daniel Boley
    • 1
  • Vassilios Morellas
    • 1
  • Nikolaos Papanikolopoulos
    • 1
  1. 1.Department of Computer Science & EngineeringUniversity of MinnesotaMinneapolisUSA

Personalised recommendations