Advertisement

Co-transduction for Shape Retrieval

  • Xiang Bai
  • Bo Wang
  • Xinggang Wang
  • Wenyu Liu
  • Zhuowen Tu
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6313)

Abstract

In this paper, we propose a new shape/object retrieval algorithm, co-transduction. The performance of a retrieval system is critically decided by the accuracy of adopted similarity measures (distances or metrics). Different types of measures may focus on different aspects of the objects: e.g. measures computed based on contours and skeletons are often complementary to each other. Our goal is to develop an algorithm to fuse different similarity measures for robust shape retrieval through a semi-supervised learning framework. We name our method co-transduction which is inspired by the co-training algorithm [1]. Given two similarity measures and a query shape, the algorithm iteratively retrieves the most similar shapes using one measure and assigns them to a pool for the other measure to do a re-ranking, and vice-versa. Using co-transduction, we achieved a significantly improved result of 97.72% on the MPEG-7 dataset [2] over the state-of-the-art performances (91% in [3], 93.4% in [4]). Our algorithm is general and it works directly on any given similarity measures/metrics; it is not limited to object shape retrieval and can be applied to other tasks for ranking/retrieval.

Keywords

Unlabeled Data Image Search Retrieval Rate Query Object Database Object 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Blum, A., Mitchell, T.: Combining labeled and unlabeled data with co-training. In: Proc. of COLT, pp. 92–100 (1998)Google Scholar
  2. 2.
    Latecki, L., Lakámper, R., Eckhardt, U.: Shape descriptors for non-rigid shapes with a single closed contour. In: Proc. of CVPR, pp. 424–429 (2000)Google Scholar
  3. 3.
    Yang, X., Bai, X., Latecki, L., Tu, Z.: Improving shape retrieval by learning graph transduction. In: Forsyth, D., Torr, P., Zisserman, A. (eds.) ECCV 2008, Part IV. LNCS, vol. 5305, pp. 788–801. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  4. 4.
    Kontschieder, P., Donoser, M., Bischof, H.: Beyond pairwise shape similarity analysis. In: Zha, H., Taniguchi, R.-i., Maybank, S. (eds.) Computer Vision – ACCV 2009. LNCS, vol. 5996. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  5. 5.
    Belongie, S., Malik, J., Puzicha, J.: Shape matching and object recognition using shape contexts. IEEE Trans. PAMI 24, 522–705 (2002)Google Scholar
  6. 6.
    Ling, H., Jacobs, D.: Shape classification using the inner-distance. IEEE Trans. PAMI 29, 286–299 (2007)Google Scholar
  7. 7.
    Sebastian, T.B., Klein, P.N., Kimia, B.B.: Recognition of shapes by editing their shock graphs. IEEE Trans. PAMI 25, 116–125 (2004)Google Scholar
  8. 8.
    Zhu, X.: Semi-supervised learning with graphs. In: Doctoral Dissertation, Carnegie Mellon University, CMU–LTI–05–192 (2005)Google Scholar
  9. 9.
    Yang, X., Koknar-Tezel, S., Latecki, L.: Locally constrained diffusion process on locally densified distance spaces with applications to shape retrieval. In: Proc. of CVPR (2009)Google Scholar
  10. 10.
    Zhou, Z.H., Li, M.: Semi-supervised regression with co-training. In: Proc. of IJCAI (2004)Google Scholar
  11. 11.
    Belkin, M., Niyogi, P., Sindhwani, V.: Manifold regularization: A geometric framework for learning from labeled and unlabeled examples. J. of Machine Learning Research 7, 2399–2434 (2006)MathSciNetGoogle Scholar
  12. 12.
    Wang, W., Zhou, Z.H.: Analyzing co-training style algorithms. In: Kok, J.N., et al. (eds.) ECML 2007. LNCS (LNAI), vol. 4701, pp. 454–465. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  13. 13.
    Coifman, R., Lafon, S.: Diffusion maps. Applied and Comp. Harmonic Ana. (2006)Google Scholar
  14. 14.
    Aslan, C., Erdem, A., Erdem, E., Tari, S.: Disconnected skeleton: Shape at its absolute scale. IEEE Trans. PAMI 30, 2188–2201 (2008)Google Scholar
  15. 15.
    Wei, C.H., Li, Y., Chau, W.Y., Li, C.T.: Trademark image retrieval using synthetic features for describing global shape and interior structure. Pattern Recognition 42, 386–394 (2009)zbMATHCrossRefGoogle Scholar
  16. 16.
    Tu, Z., Yuille, A.L.: Shape matching and recognition - using generative models and informative features. In: Pajdla, T., Matas, J(G.) (eds.) ECCV 2004. LNCS, vol. 3023, pp. 195–209. Springer, Heidelberg (2004)Google Scholar
  17. 17.
    Schmidt, F.R., Toeppe, E., Cremers, D.: Efficient planar graph cuts with applications in computer vision. In: Proc. of CVPR (2009)Google Scholar
  18. 18.
    Felzenszwalb, P.F., Schwartz, J.: Hierarchical matching of deformable shapes. In: CVPR (2007)Google Scholar
  19. 19.
    Xu, C., Liu, J., Tang, X.: 2d shape matching by contour flexibility. IEEE Trans. PAMI 31, 180–186 (2009)Google Scholar
  20. 20.
    Egozi, A., Keller, Y., Guterman, H.: Improving shape retrieval by spectral matching and meta similarity. IEEE Trans. Image Processing 19, 1319–1327 (2010)CrossRefGoogle Scholar
  21. 21.
    Gonzalez, R., Woods, R., Eddins, S.: Digital image processing using matlab. Prentice-Hall, EnglewoodCliffs (2004)Google Scholar
  22. 22.
    Kim, Y.S., Kim, W.Y.: Content-based trademark retrieval system using a visually salient feature. Image and Vision Computing 16, 931–939 (1998)CrossRefGoogle Scholar
  23. 23.
    Nistér, D., Stewénius, H.: Scalable recognition with a vocabulary tree. In: Proc. CVPR, pp. 2161–2168 (2006)Google Scholar
  24. 24.
    Sivic, J., Zisserman, A.: Video google: A text retrieval approach to object matching in videos. In: Proc. ICCV, pp. 1470–1477 (2003)Google Scholar
  25. 25.
    Jegou, H., Schmid, C., Harzallah, H., Verbeek, J.: Accurate image search using the contextual dissimilarity measure. IEEE Trans. PAMI 32, 2–11 (2010)Google Scholar
  26. 26.
    Stewénius, H., Nistér, D.: Object recognition benchmark, http://vis.uky.edu/%7Estewe/ukbench/
  27. 27.
    Mikolajczyk, K., Schmid, C.: Scale and affine invariant interest point detectors. IJCV 60, 63–86 (2004)CrossRefGoogle Scholar
  28. 28.
    Lowe, D.: Distinctive image features from scale-invariant key points. IJCV 60, 91–110 (2004)CrossRefGoogle Scholar
  29. 29.
    Bai, X., Yang, X., Latecki, L., Liu, W., Tu, Z.: Learning context sensitive shape similarity by graph transduction. IEEE Trans. PAMI 32, 861–874 (2010)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Xiang Bai
    • 1
  • Bo Wang
    • 1
  • Xinggang Wang
    • 1
  • Wenyu Liu
    • 1
  • Zhuowen Tu
    • 2
  1. 1.Department of Electronics and Information EngineeringHuazhong University of Science and TechnologyChina
  2. 2.Lab of Neuro ImagingUniversity of CaliforniaLos Angeles

Personalised recommendations